/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "framework/executor.h" #include #include #include #include "common/enforce.h" #include "common/log.h" #include "framework/framework.pb-c.h" #include "framework/lod_tensor.h" #include "framework/operator.h" #include "framework/program/program-optimize/program_optimize.h" #include "framework/program/program_desc.h" #include "framework/program/var_desc.h" #include "framework/scope.h" #include "framework/tensor.h" #ifdef PADDLE_EXECUTOR_MULTITHREAD #include #include #include "common/threadpool.h" #endif #ifdef PADDLE_MOBILE_CL #include "framework/cl/cl_image.h" #endif namespace paddle_mobile { namespace framework { using framework::Variable; using framework::Variable; #pragma mark - executor template Executor::Executor(const framework::Program p, int batch_size, const bool use_optimize, const bool loddable) : program_(p), batch_size_(batch_size), use_optimize_(use_optimize), loddable_(loddable) { Variable *variable_ptr = program_.scope->Var("batch_size"); variable_ptr->SetValue(batch_size); to_predict_program_ = use_optimize_ ? program_.optimizeProgram : program_.originProgram; PADDLE_MOBILE_ENFORCE(to_predict_program_ != nullptr, "to_predict_program_ == NULL!"); const std::vector> &blocks = to_predict_program_->Blocks(); DLOG << "executor in loaddable mode: " << loddable_; for (int i = 0; i < blocks.size(); ++i) { std::shared_ptr block_desc = blocks[i]; std::vector> ops = block_desc->Ops(); for (int j = 0; j < ops.size(); ++j) { std::shared_ptr op = ops[j]; DLOG << "create op: " << op->Type(); auto op_base = framework::OpRegistry::CreateOp( op->Type(), op->GetInputs(), op->GetOutputs(), op->GetAttrMap(), program_.scope); // infer shape to reshape tensor before predict, // but for lod tensor, it will need to reshape in runtime if (!loddable_) { op_base->InferShape(); } ops_of_block_[*block_desc.get()].push_back(op_base); } } if (program_.combined) { InitCombineMemory(); } else { InitMemory(); } std::shared_ptr to_predict_block = to_predict_program_->Block(0); auto &ops = ops_of_block_[*to_predict_block.get()]; for (const auto &op : ops) { op->Init(); } } template static void LoadMemInternal(void **data, framework::LoDTensor *tensor, bool quant_uint8 = false) { char **data_buf = reinterpret_cast(data); int64_t size = tensor->numel(); Dtype *tensor_data = tensor->mutable_data(); if (quant_uint8) { // should be moved into operator init function float min_value; float max_value; memcpy(&min_value, data_buf, sizeof(float)); memcpy(&max_value, data_buf + sizeof(float), sizeof(float)); data_buf += 2 * sizeof(float); const float factor = (max_value - min_value) / 255.0; const uint8_t *uint8_data = reinterpret_cast(data_buf); for (int k = 0; k < size; ++k) { tensor_data[k] = uint8_data[k] * factor + min_value; } data_buf += size * sizeof(uint8_t); } else { memcpy(tensor_data, *data_buf, size * sizeof(Dtype)); *data_buf += size * sizeof(Dtype); } } template void Executor::LoadMemory( void **data, const std::shared_ptr var_desc, framework::LoDTensor *tensor) { char **data_buf = reinterpret_cast(data); // version uint32_t version = *(reinterpret_cast(*data_buf)); *data_buf += sizeof(uint32_t); // lod information // uint64_t lod_level = *(reinterpret_cast(*data_buf)); uint64_t lod_level = 0; memcpy(&lod_level, *data_buf, sizeof(uint64_t)); *data_buf += sizeof(uint64_t); auto *lod = tensor->mutable_lod(); lod->resize(lod_level); for (uint64_t i = 0; i < lod_level; ++i) { uint64_t size = *(reinterpret_cast(*data_buf)); *data_buf += sizeof(uint64_t); std::vector tmp_dim(size / sizeof(size_t)); memcpy(tmp_dim.data(), *data_buf, size); (*lod)[i] = std::move(tmp_dim); *data_buf += size; } // tensor version uint32_t tensor_version = *(reinterpret_cast(*data_buf)); *data_buf += sizeof(uint32_t); // tensor desc size int32_t tensor_desc_size = *(reinterpret_cast(*data_buf)); *data_buf += sizeof(int32_t); // skip tensor desc *data_buf += tensor_desc_size; const framework::TensorDesc &tensor_desc = var_desc->Tensor_desc(); tensor->Resize(framework::make_ddim(tensor_desc.Dims())); // parse tensor from stream switch (tensor_desc.DataType()) { case framework::VARTYPE_TYPE_FP32: LoadMemInternal(reinterpret_cast(data_buf), tensor, program_.quantification); break; case framework::VARTYPE_TYPE_INT8: LoadMemInternal(reinterpret_cast(data_buf), tensor); break; case framework::VARTYPE_TYPE_INT32: LoadMemInternal(reinterpret_cast(data_buf), tensor); break; default: LOG(kLOG_ERROR) << "data type is not supported"; } } template void Executor::InitMemory() { for (const auto &block : to_predict_program_->Blocks()) { for (const auto &var_desc : block->Vars()) { auto var = program_.scope->Var(var_desc->Name()); auto tensor = var->template GetMutable(); if (var_desc->Persistable()) { if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") { continue; } char *origin_data = ReadFileToBuff(program_.model_path + "/" + var_desc->Name()); char *data = origin_data; LoadMemory(reinterpret_cast(&data), var_desc, tensor); delete[] origin_data; } else { if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) { varInputMemory(var_desc, var, tensor); } } } } } template void Executor::InitCombineMemory() { char *origin_data = nullptr; bool self_alloc = false; if (program_.combined_params_buf && program_.combined_params_len) { origin_data = reinterpret_cast( const_cast(program_.combined_params_buf)); } else { self_alloc = true; origin_data = ReadFileToBuff(program_.para_path); } PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "data == nullptr"); char *data = origin_data; for (const auto &block : to_predict_program_->Blocks()) { for (const auto &var_desc : block->Vars()) { auto var = program_.scope->Var(var_desc->Name()); auto tensor = var->template GetMutable(); if (var_desc->Persistable()) { if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") { continue; } LoadMemory(reinterpret_cast(&data), var_desc, tensor); } else { if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) { varInputMemory(var_desc, var, tensor); } } } } if (self_alloc) { delete[] origin_data; } LOG(kLOG_INFO) << "init combine memory finish"; } template bool Executor::varInputMemory( const std::shared_ptr &var_desc, Variable *var, framework::LoDTensor *tensor) const { auto type = var_desc->Tensor_desc().DataType(); switch (type) { case framework::VARTYPE_TYPE_FP32: tensor->mutable_data(); break; case framework::VARTYPE_TYPE_INT8: tensor->mutable_data(); break; case framework::VARTYPE_TYPE_INT32: tensor->mutable_data(); break; case framework::VARTYPE_TYPE_INT64: tensor->mutable_data(); break; default: break; } bool is_mute_match = (type == framework::VARTYPE_TYPE_FP32) || (type == framework::VARTYPE_TYPE_INT8) || (type == framework::VARTYPE_TYPE_INT32) || (type == framework::VARTYPE_TYPE_INT64); PADDLE_MOBILE_ENFORCE(is_mute_match, "got unhandled data type : %d", type); return is_mute_match; } template std::shared_ptr Executor::Predict( const framework::Tensor &t) { framework::Variable *g_feed_value = program_.scope->Var("feed"); framework::Tensor *feed_tensor = g_feed_value->GetMutable(); feed_tensor->Resize(t.dims()); feed_tensor->ShareDataWith(t); std::shared_ptr to_predict_block = to_predict_program_->Block(0); auto &ops = ops_of_block_[*to_predict_block.get()]; #ifdef PADDLE_MOBILE_PROFILE std::vector profile(ops.size()); #endif for (int i = 0; i < ops.size(); i++) { #ifdef PADDLE_MOBILE_PROFILE struct timespec ts; clock_gettime(CLOCK_MONOTONIC, &ts); profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec; #endif // to Run ops[i]->Run(); #ifdef PADDLE_MOBILE_PROFILE clock_gettime(CLOCK_MONOTONIC, &ts); profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec; #endif } auto last_op = ops.rbegin(); auto output_map = (*last_op)->Outputs(); std::vector out_keys = (*last_op)->GetOutKeys(); PADDLE_MOBILE_ENFORCE(out_keys.size() > 0, "the last op contains no output"); framework::LoDTensor *output_tensor = framework::GetVarValue(out_keys[0], output_map, *(program_.scope)); #ifdef PADDLE_MOBILE_PROFILE std::unordered_map _tp; for (int i = 0; i < profile.size(); i++) { const auto &pInfo = profile[i]; uint64_t timeCost = pInfo.runEnd - pInfo.runBegin; _tp[ops[i]->Type()] += timeCost; } printf("====================[ profile ]======================\n"); using prof_t = std::pair; std::vector _tv(_tp.begin(), _tp.end()); uint64_t _ptotal = 0; for (auto const &p : _tv) { _ptotal += p.second; } auto compf = [](const prof_t &a, const prof_t &b) { return a.second > b.second; }; std::sort(_tv.begin(), _tv.end(), compf); _tv.push_back(std::make_pair("total", _ptotal)); for (auto const &p : _tv) { printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(), static_cast(p.second), static_cast(p.second) / _ptotal * 100.0); } printf("====================[---------]======================\n"); #endif return std::make_shared(framework::Tensor(*output_tensor)); } template std::shared_ptr Executor::PredictLod( const framework::LoDTensor &t) { framework::Variable *g_feed_value = program_.scope->Var("feed"); framework::LoDTensor *feed_tensor = g_feed_value->GetMutable(); feed_tensor->Resize(t.dims()); feed_tensor->ShareDataWith(t); feed_tensor->set_lod(t.lod()); std::shared_ptr to_predict_block = to_predict_program_->Block(0); auto &ops = ops_of_block_[*to_predict_block.get()]; #ifdef PADDLE_MOBILE_PROFILE std::vector profile(ops.size()); #endif for (int i = 0; i < ops.size(); i++) { #ifdef PADDLE_MOBILE_PROFILE struct timespec ts; clock_gettime(CLOCK_MONOTONIC, &ts); profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec; #endif if (loddable_) { ops[i]->InferShape(); } ops[i]->Run(); #ifdef PADDLE_MOBILE_PROFILE clock_gettime(CLOCK_MONOTONIC, &ts); profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec; #endif } auto last_op = ops.rbegin(); auto output_map = (*last_op)->Outputs(); std::vector out_keys = (*last_op)->GetOutKeys(); PADDLE_MOBILE_ENFORCE(out_keys.size() > 0, "the last op contains no output"); framework::LoDTensor *output_tensor = framework::GetVarValue(out_keys[0], output_map, *(program_.scope)); #ifdef PADDLE_MOBILE_PROFILE std::unordered_map _tp; for (int i = 0; i < profile.size(); i++) { const auto &pInfo = profile[i]; uint64_t timeCost = pInfo.runEnd - pInfo.runBegin; _tp[ops[i]->Type()] += timeCost; } printf("====================[ profile ]======================\n"); using prof_t = std::pair; std::vector _tv(_tp.begin(), _tp.end()); uint64_t _ptotal = 0; for (auto const &p : _tv) { _ptotal += p.second; } auto compf = [](const prof_t &a, const prof_t &b) { return a.second > b.second; }; std::sort(_tv.begin(), _tv.end(), compf); _tv.push_back(std::make_pair("total", _ptotal)); for (auto const &p : _tv) { printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(), static_cast(p.second), static_cast(p.second) / _ptotal * 100.0); } printf("====================[---------]======================\n"); #endif return std::make_shared( framework::LoDTensor(*output_tensor)); } template std::shared_ptr Executor::Predict( const framework::Tensor &t, int block_id) { return Predict(t); } template std::vector::Ptype> Executor::Predict( const std::vector &input, const std::vector &dims) { framework::Tensor tensor(input, framework::make_ddim(dims)); std::shared_ptr output_tensor = Predict(tensor, 0); if (output_tensor != nullptr) { Executor::Ptype *output_ptr = output_tensor->data::Ptype>(); std::vector::Ptype> result_vector; for (int j = 0; j < output_tensor->numel(); ++j) { result_vector.push_back(output_ptr[j]); } return result_vector; } else { DLOG << "return empty vector"; return {}; } } #ifdef PADDLE_MOBILE_FPGA template void Executor::InjectVariable(const framework::Tensor &t, std::string var_name) { framework::Variable *g_feed_value = program_.scope->Var(var_name); framework::Tensor *feed_tensor = g_feed_value->GetMutable(); feed_tensor->Resize(t.dims()); feed_tensor->ShareDataWith(t); } template void Executor::FeedData(const framework::Tensor &t) { InjectVariable(t, "feed"); } template std::shared_ptr Executor::FetchResult(int id) { std::shared_ptr to_predict_block = to_predict_program_->Block(0); auto &ops = ops_of_block_[*to_predict_block.get()]; PADDLE_MOBILE_ENFORCE(id < (int)ops.size(), "Index out of range"); auto op = id < 0 ? ops[ops.size() - 1] : ops[id]; auto output_map = op->Outputs(); std::vector out_keys = op->GetOutKeys(); PADDLE_MOBILE_ENFORCE(!out_keys.empty(), "this op contains no output"); auto *output_tensor = framework::GetVarValue( out_keys[0], output_map, *(program_.scope)); return std::make_shared(framework::Tensor(*output_tensor)); } template void Executor::Predict_From_To(int start, int end) { std::shared_ptr to_predict_block = to_predict_program_->Block(0); auto &ops = ops_of_block_[*to_predict_block.get()]; end = end < 0 ? static_cast(ops.size()) : end; PADDLE_MOBILE_ENFORCE(start >= 0 && start < end && end <= ops.size(), "start or end parameter is wrong"); #ifdef PADDLE_MOBILE_PROFILE std::vector profile(ops.size()); #endif for (int i = start; i < end; i++) { #ifdef PADDLE_MOBILE_PROFILE struct timespec ts; clock_gettime(CLOCK_MONOTONIC, &ts); profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec; #endif DLOG << "Running op: " << i << " " << ops[i]->Type(); ops[i]->Run(); #ifdef PADDLE_MOBILE_PROFILE clock_gettime(CLOCK_MONOTONIC, &ts); profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec; #endif } } template void Executor::Predict_From(int start) { Predict_From_To(start); } template void Executor::Predict_To(int end) { Predict_From_To(0, end); } #endif #ifdef PADDLE_MOBILE_CL template void Executor::LoadMemory(const framework::VarDesc var_desc, float *tensorInput, char **data) {} template <> void Executor::LoadMemory( const framework::VarDesc var_desc, float *tensorInput, char **data) { // 1. version uint32_t version = *reinterpret_cast(*data); (*data) += sizeof(uint32_t); // 2 Lod information uint64_t *lod_level_ptr = new uint64_t(); memcpy(lod_level_ptr, (*data), sizeof(uint64_t)); uint64_t lod_level = *lod_level_ptr; delete lod_level_ptr; (*data) += sizeof(uint64_t); for (uint64_t i = 0; i < lod_level; ++i) { uint64_t size = *reinterpret_cast(*data); (*data) += sizeof(uint64_t); std::vector tmp(size / sizeof(size_t)); for (int k = 0; k < tmp.size(); ++k) { tmp[k] = *reinterpret_cast(*data); (*data) += sizeof(size_t); } } // 3. tensor version uint32_t tensor_version = *reinterpret_cast(*data); (*data) += sizeof(uint32_t); // 4. tensor desc int32_t size = *reinterpret_cast(*data); (*data) += sizeof(int32_t); std::unique_ptr buf(new char[size]); for (int m = 0; m < size; ++m) { buf.get()[m] = (*data)[m]; } (*data) += (sizeof(char) * size); const framework::TensorDesc &desc = var_desc.Tensor_desc(); int memory_size = 1; for (auto l : desc.Dims()) { memory_size *= l; } void *memory = nullptr; // int type_size = 0; // switch (desc.DataType()) { // case framework::VARTYPE_TYPE_FP16: // type_size = 2; // break; // case framework::VARTYPE_TYPE_FP32: // type_size = 4; // memory = tensor->mutable_data(); // break; // case framework::VARTYPE_TYPE_FP64: // type_size = 8; // break; // case framework::VARTYPE_TYPE_INT32: // memory = tensor->mutable_data(); // type_size = 4; // break; // case framework::VARTYPE_TYPE_INT64: // type_size = 8; // break; // case framework::VARTYPE_TYPE_BOOL: // type_size = 1; // break; // default: // break; // } int type_size = 4; memory = tensorInput; if (program_.quantification) { float min_value; float max_value; memcpy(&min_value, *data, sizeof(float)); memcpy(&max_value, *data + sizeof(float), sizeof(float)); *data += 2 * sizeof(float); const float factor = (max_value - min_value) / 255.0; uint8_t *uint8_data = reinterpret_cast(*data); for (int k = 0; k < memory_size; ++k) { static_cast(memory)[k] = uint8_data[k] * factor + min_value; } *data += (memory_size * sizeof(uint8_t)); } else { for (int n = 0; n < memory_size; n++) { float value; memcpy(&value, *data + n * type_size, type_size); if (value < 1e-30 && value > -1e-30) { static_cast(memory)[n] = 0.0; } else { static_cast(memory)[n] = value; } } (*data) += (sizeof(char) * memory_size * type_size); } } template <> void Executor::InitMemory() { for (const auto &block : to_predict_program_->Blocks()) { for (const auto &var_desc : block->Vars()) { auto var = program_.scope->Var(var_desc->Name()); if (var_desc->Persistable()) { CLImage *cl_image = nullptr; if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") { var->template GetMutable(); continue; } else { cl_image = var->template GetMutable(); } char *origin_data = ReadFileToBuff(program_.model_path + "/" + var_desc->Name()); char *data = origin_data; cl_context context = program_.scope->GetCLScpoe()->Context(); const framework::TensorDesc &desc = var_desc->Tensor_desc(); int numel = 1; for (auto l : desc.Dims()) { numel *= l; } DLOG << var_desc->Name(); float *tensorInput = static_cast( paddle_mobile::memory::Alloc(sizeof(float) * numel)); LoadMemory(*var_desc, tensorInput, &data); framework::DDim ddim = framework::make_ddim(desc.Dims()); // has not init cl_image->SetTensorData(tensorInput, ddim); delete origin_data; paddle_mobile::memory::Free(tensorInput); } else { if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) { auto cl_image = var->template GetMutable(); cl_context context = program_.scope->GetCLScpoe()->Context(); cl_command_queue command_queue = program_.scope->GetCLScpoe()->CommandQueue(); const framework::TensorDesc &desc = var_desc->Tensor_desc(); // framework::DDim ddim = framework::make_ddim(desc.Dims()); framework::DDim ddim = cl_image->dims(); DLOG << var_desc->Name(); cl_image->InitEmptyImage(context, command_queue, ddim); } } } } } template <> void Executor::InitCombineMemory() { char *origin_data = nullptr; bool self_alloc = false; if (program_.combined_params_buf && program_.combined_params_len) { LOG(kLOG_INFO) << "use outter memory"; origin_data = reinterpret_cast(program_.combined_params_buf); } else { LOG(kLOG_INFO) << " begin init combine memory"; self_alloc = true; origin_data = ReadFileToBuff(program_.para_path); } PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "origin_data==nullptr!!!"); float *data = reinterpret_cast(origin_data); for (const auto &block : to_predict_program_->Blocks()) { for (const auto &var_desc : block->Vars()) { auto var = program_.scope->Var(var_desc->Name()); if (var_desc->Persistable()) { CLImage *cl_image = nullptr; if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") { var->template GetMutable(); continue; } else { cl_image = var->template GetMutable(); } cl_context context = program_.scope->GetCLScpoe()->Context(); const framework::TensorDesc &desc = var_desc->Tensor_desc(); framework::DDim ddim = framework::make_ddim(desc.Dims()); int numel = 1; for (int i = 0; i < ddim.size(); i++) { numel = numel * ddim[i]; } float *tensorInput = static_cast( paddle_mobile::memory::Alloc(sizeof(float) * numel)); LoadMemory(*var_desc, tensorInput, &origin_data); // has not init cl_image->SetTensorData(tensorInput, ddim); paddle_mobile::memory::Free(tensorInput); } else { auto cl_image = var->template GetMutable(); cl_context context = program_.scope->GetCLScpoe()->Context(); cl_command_queue command_queue = program_.scope->GetCLScpoe()->CommandQueue(); const framework::TensorDesc &desc = var_desc->Tensor_desc(); framework::DDim ddim = cl_image->dims(); // framework::DDim ddim = framework::make_ddim(desc.Dims()); cl_image->InitEmptyImage(context, command_queue, ddim); } } } if (self_alloc) { delete data; } LOG(kLOG_INFO) << " end init combine memory "; } #endif template class Executor; template class Executor; template class Executor; template class Executor; } // namespace framework } // namespace paddle_mobile