// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/xpu/sequence_topk_avg_pooling_compute.h" #include #include "lite/backends/xpu/xpu_header_sitter.h" #include "lite/core/op_registry.h" namespace paddle { namespace lite { namespace kernels { namespace xpu { void SequenceTopkAvgPoolingCompute::PrepareForRun() { lod_xpu_guard_ = TargetWrapperXPU::MallocScratchPad( 4 * XPU_MAX_LOD_SIZE * sizeof(int), false /* use_l3 */); in_lod_cpu.reset(new int[XPU_MAX_LOD_SIZE]); row_lod_cpu.reset(new int[XPU_MAX_LOD_SIZE]); col_lod_cpu.reset(new int[XPU_MAX_LOD_SIZE]); } void SequenceTopkAvgPoolingCompute::Run() { auto& param = this->template Param(); auto& ctx = this->ctx_->template As(); auto* in = param.X; auto* row = param.ROW; auto* col = param.COLUMN; auto* out = param.Out; auto* pos = param.pos; auto channel_num = param.channel_num; auto topks = param.topks; auto k_num = topks.size(); auto max_k = topks[topks.size() - 1]; auto in_lod = in->lod()[0]; auto row_lod = row->lod()[0]; auto col_lod = col->lod()[0]; int batch_size = row_lod.size() - 1; int pos_total_size = row_lod[batch_size] * channel_num * max_k; std::vector vec_pos_shape; vec_pos_shape.push_back(pos_total_size); pos->Resize(vec_pos_shape); auto pos_data = pos->mutable_data(TARGET(kXPU)); int offset = 0; std::vector vec_out_lod; vec_out_lod.reserve(batch_size + 1); for (int i = 0; i <= batch_size; ++i) { offset = row_lod[i]; vec_out_lod.push_back(offset); } LoD lod_temp; lod_temp.push_back(vec_out_lod); out->set_lod(lod_temp); auto in_data = in->data(); auto out_data = out->mutable_data(TARGET(kXPU)); int* in_lod_xpu = reinterpret_cast(lod_xpu_guard_->addr_); int* row_lod_xpu = in_lod_xpu + in_lod.size(); int* col_lod_xpu = row_lod_xpu + row_lod.size(); int* topks_xpu = col_lod_xpu + col_lod.size(); for (int i = 0; i < in_lod.size(); ++i) { in_lod_cpu[i] = in_lod[i]; } for (int i = 0; i < row_lod.size(); ++i) { row_lod_cpu[i] = row_lod[i]; } for (int i = 0; i < col_lod.size(); ++i) { col_lod_cpu[i] = col_lod[i]; } XPU_CALL(xpu_memcpy(in_lod_xpu, in_lod_cpu.get(), in_lod.size() * sizeof(int), XPUMemcpyKind::XPU_HOST_TO_DEVICE)); XPU_CALL(xpu_memcpy(row_lod_xpu, row_lod_cpu.get(), row_lod.size() * sizeof(int), XPUMemcpyKind::XPU_HOST_TO_DEVICE)); XPU_CALL(xpu_memcpy(col_lod_xpu, col_lod_cpu.get(), col_lod.size() * sizeof(int), XPUMemcpyKind::XPU_HOST_TO_DEVICE)); XPU_CALL(xpu_memcpy(topks_xpu, topks.data(), topks.size() * sizeof(int), XPUMemcpyKind::XPU_HOST_TO_DEVICE)); int r = xdnn::sequence_topk_avg_pooling(ctx.GetRawContext(), in_data, out_data, pos_data, batch_size, channel_num, in_lod_xpu, row_lod_xpu, col_lod_xpu, topks_xpu, k_num); CHECK_EQ(r, 0); } } // namespace xpu } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(sequence_topk_avg_pooling, kXPU, kFloat, kNCHW, paddle::lite::kernels::xpu::SequenceTopkAvgPoolingCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kXPU))}) .BindInput("ROW", {LiteType::GetTensorTy(TARGET(kXPU))}) .BindInput("COLUMN", {LiteType::GetTensorTy(TARGET(kXPU))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kXPU))}) .BindOutput("pos", {LiteType::GetTensorTy(TARGET(kXPU))}) .Finalize();