// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/xpu/concat_compute.h" #include "lite/backends/xpu/xpu_header_sitter.h" #include "lite/core/op_registry.h" namespace paddle { namespace lite { namespace kernels { namespace xpu { void ConcatCompute::Run() { auto& param = this->Param(); auto& ctx = this->ctx_->As(); auto ins = param.x; auto out = param.output; int64_t axis = param.axis; int n = ins.size(); int h = 1; int w_except_axis = 1; CHECK(n <= 8) << "XPU only surpport at most 8 tensors for now"; for (int i = 0; i < axis; ++i) { h *= (ins[0]->dims())[i]; } for (int i = axis + 1; i < ins[0]->dims().size(); ++i) { w_except_axis *= (ins[0]->dims())[i]; } CHECK(axis >= 0) << "concat: axis shoud >= 0!"; CHECK(axis < ins[0]->dims().size()) << "concat: axis shoud < ins[0]->dims()!"; for (int i = 0; i < n; ++i) { int hh = 1; int ww = 1; for (int j = 0; j < axis; ++j) { hh *= (ins[i]->dims())[j]; } for (int j = axis + 1; j < ins[i]->dims().size(); ++j) { ww *= (ins[i]->dims())[j]; } CHECK(hh == h) << "concat: h should be eual!"; CHECK(ww == w_except_axis) << "concat: w should be eual except for axis!"; } int in_w_host[n]; // NOLINT const float* ptrs[n]; // NOLINT for (int i = 0; i < n; ++i) { ptrs[i] = ins[i]->data(); in_w_host[i] = w_except_axis * (ins[i]->dims())[axis]; } int r = xdnn::concat(ctx.GetRawContext(), /* ctx */ h, /* height */ in_w_host, /* width_x */ n, /* n */ ptrs, /* lm_ptrs */ out->mutable_data(TARGET(kXPU)) /*y*/); CHECK_EQ(r, 0); } } // namespace xpu } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL( concat, kXPU, kFloat, kNCHW, paddle::lite::kernels::xpu::ConcatCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kXPU))}) .BindInput("AxisTensor", {LiteType::GetTensorTy(TARGET(kXPU), PRECISION(kInt32))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kXPU))}) .Finalize();