// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "lite/api/paddle_use_kernels.h" #include "lite/api/paddle_use_ops.h" #include "lite/core/arena/framework.h" namespace paddle { namespace lite { class ClipComputeTester : public arena::TestCase { protected: // common attributes for this op. std::string x_ = "x"; std::string out_ = "out"; std::string min_tensor_ = "min_tensor"; std::string max_tensor_ = "max_tensor"; float min_{}; float max_{}; bool use_minmax_tensor_{}; DDim x_dims_; public: ClipComputeTester(const Place& place, const std::string& alias, int n, int c, int h, int w, float min, float max, bool use_minmax_tensor) : TestCase(place, alias) { x_dims_ = DDim(std::vector({n, c, h, w})); min_ = min; max_ = max; use_minmax_tensor_ = use_minmax_tensor; } void RunBaseline(Scope* scope) override { auto* x = scope->FindTensor(x_); auto* out = scope->NewTensor(out_); CHECK(out); out->Resize(x->dims()); const auto* x_data = x->data(); auto* out_data = out->mutable_data(); for (int i = 0; i < x->numel(); i++) { if (x_data[i] < min_) out_data[i] = min_; else if (x_data[i] > max_) out_data[i] = max_; else out_data[i] = x_data[i]; } } void PrepareOpDesc(cpp::OpDesc* op_desc) { op_desc->SetType("clip"); op_desc->SetInput("X", {x_}); op_desc->SetOutput("Out", {out_}); if (use_minmax_tensor_) { op_desc->SetInput("Min", {min_tensor_}); op_desc->SetInput("Max", {max_tensor_}); op_desc->SetAttr("min", 0.f); op_desc->SetAttr("max", 0.f); } else { op_desc->SetAttr("min", min_); op_desc->SetAttr("max", max_); } } void PrepareData() override { std::vector x_data(x_dims_.production()); for (int i = 0; i < x_dims_.production(); i++) { float sign = i % 3 == 0 ? -1.0f : 1.0f; x_data[i] = sign * static_cast(i % 128) * 0.013f + 0.001; } SetCommonTensor(x_, x_dims_, x_data.data()); if (use_minmax_tensor_) { std::vector min_data = {min_}; SetCommonTensor( min_tensor_, DDim(std::vector({1})), min_data.data()); std::vector max_data = {max_}; SetCommonTensor( max_tensor_, DDim(std::vector({1})), max_data.data()); } } }; TEST(Clip, precision) { LOG(INFO) << "test clip op"; #ifdef LITE_WITH_ARM Place place(TARGET(kARM)); float min = -1; float max = 1; for (int n : {1, 3}) { for (int c : {3, 5}) { for (int h : {5, 6}) { for (int w : {6, 7}) { for (bool use_minmax_tensor : {true, false}) { std::unique_ptr tester(new ClipComputeTester( place, "def", n, c, h, w, min, max, use_minmax_tensor)); arena::Arena arena(std::move(tester), place, 2e-5); arena.TestPrecision(); } } } } } #endif } } // namespace lite } // namespace paddle