/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #ifdef POOL_OP #include "operators/kernel/pool_kernel.h" class PoolingArgs; namespace paddle_mobile { namespace operators { template <> bool PoolKernel::Init(PoolParam *param) { auto *input = const_cast(param->Input()); auto *output = param->Output(); vector ksize = param->Ksize(); vector strides = param->Strides(); vector paddings = param->Paddings(); std::string pooling_type = param->PoolingType(); if (input->type() == type_id()) { int channels = input->dims()[1]; int height = input->dims()[2]; int width = input->dims()[3]; int num = input->dims()[0]; int out_width = (width + 2 * paddings[1] - ksize[1]) / strides[1] + 1; int out_height = (height + 2 * paddings[0] - ksize[0]) / strides[0] + 1; framework::DDim dim = framework::make_ddim({num, channels, out_height, out_width}); output->mutable_data(dim); return true; } auto input_ptr = input->data(); fpga::format_fp16_ofm(output); auto output_ptr = output->mutable_data(); fpga::PoolingArgs poolArgs = {0}; poolArgs.mode = pooling_type == "max" ? 0 : 1; // max:0, avg:1 poolArgs.kernel_reciprocal = fpga::fp32_2_fp16(float(1.0 / (ksize[0] * ksize[1]))); // NOLINT poolArgs.image.address = input_ptr; poolArgs.image.channels = (uint32_t)input->dims()[1]; poolArgs.image.height = (uint32_t)input->dims()[2]; poolArgs.image.width = (uint32_t)input->dims()[3]; poolArgs.image.pad_height = (uint32_t)paddings[0]; poolArgs.image.pad_width = (uint32_t)paddings[1]; poolArgs.image.scale_address = input->scale; poolArgs.output.address = output_ptr; poolArgs.output.scale_address = output->scale; poolArgs.kernel.height = (uint32_t)ksize[0]; poolArgs.kernel.width = (uint32_t)ksize[1]; poolArgs.kernel.stride_h = (uint32_t)strides[0]; poolArgs.kernel.stride_w = (uint32_t)strides[1]; param->SetFpgaArgs(poolArgs); return true; } template <> void PoolKernel::Compute(const PoolParam ¶m) { auto *input = const_cast(param.Input()); if (input->type() == type_id()) { auto *output = param.Output(); auto in = input->data(); auto N = input->dims()[0]; output->Resize( {N, output->dims()[1], output->dims()[2], output->dims()[3]}); auto len = output->numel(); auto out = output->mutable_data(); int C = input->dims()[1], H = input->dims()[2], // N = input->dims()[0], W = input->dims()[3]; int HW = H * W, CHW = C * H * W, WC = W * C; for (int n = 0; n < N; n++) { for (int c = 0; c < C; c++) { out[n * C + c] = 0; for (int h = 0; h < H; h++) { for (int w = 0; w < W; w++) { out[n * C + c] += in[n * CHW + h * WC + w * C + c]; // in[n * CHW + c * HW + h * W + w]; // } } out[n * C + c] /= HW; } } return; } fpga::ComputeFpgaPool(param.FpgaArgs()); } } // namespace operators } // namespace paddle_mobile #endif