// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/api/paddle_api.h" #include "lite/core/device_info.h" #include "lite/core/target_wrapper.h" #include "lite/core/tensor.h" #ifdef LITE_WITH_CUDA #include "lite/backends/cuda/target_wrapper.h" #endif namespace paddle { namespace lite_api { Tensor::Tensor(void *raw) : raw_tensor_(raw) {} // TODO(Superjomn) refine this by using another `const void* const_raw`; Tensor::Tensor(const void *raw) { raw_tensor_ = const_cast(raw); } lite::Tensor *tensor(void *x) { return static_cast(x); } const lite::Tensor *ctensor(void *x) { return static_cast(x); } void Tensor::Resize(const shape_t &shape) { tensor(raw_tensor_)->Resize(shape); } template <> const float *Tensor::data() const { return ctensor(raw_tensor_)->data(); } template <> const int8_t *Tensor::data() const { return ctensor(raw_tensor_)->data(); } template <> const int64_t *Tensor::data() const { return ctensor(raw_tensor_)->data(); } template <> const int32_t *Tensor::data() const { return ctensor(raw_tensor_)->data(); } template <> int *Tensor::mutable_data(TargetType type) const { return tensor(raw_tensor_)->mutable_data(type); } template <> float *Tensor::mutable_data(TargetType type) const { return tensor(raw_tensor_)->mutable_data(type); } template <> int8_t *Tensor::mutable_data(TargetType type) const { return tensor(raw_tensor_)->mutable_data(type); } template <> int64_t *Tensor::mutable_data(TargetType type) const { return tensor(raw_tensor_)->mutable_data(type); } template void Tensor::CopyFromCpu(const T *src_data) { T *data = tensor(raw_tensor_)->mutable_data(type); int64_t num = tensor(raw_tensor_)->numel(); CHECK(num > 0) << "You should call Resize interface first"; if (type == TargetType::kHost || type == TargetType::kARM) { lite::TargetWrapperHost::MemcpySync( data, src_data, num * sizeof(T), lite::IoDirection::HtoH); } else if (type == TargetType::kCUDA) { #ifdef LITE_WITH_CUDA lite::TargetWrapperCuda::MemcpySync( data, src_data, num * sizeof(T), lite::IoDirection::HtoD); #else LOG(FATAL) << "Please compile the lib with CUDA."; #endif } else { LOG(FATAL) << "The CopyFromCpu interface just support kHost, kARM, kCUDA"; } } template void Tensor::CopyToCpu(T *data) const { const T *src_data = tensor(raw_tensor_)->data(); int64_t num = tensor(raw_tensor_)->numel(); CHECK(num > 0) << "You should call Resize interface first"; auto type = tensor(raw_tensor_)->target(); if (type == TargetType::kHost || type == TargetType::kARM) { lite::TargetWrapperHost::MemcpySync( data, src_data, num * sizeof(T), lite::IoDirection::HtoH); } else if (type == TargetType::kCUDA) { #ifdef LITE_WITH_CUDA lite::TargetWrapperCuda::MemcpySync( data, src_data, num * sizeof(T), lite::IoDirection::DtoH); #else LOG(FATAL) << "Please compile the lib with CUDA."; #endif } else { LOG(FATAL) << "The CopyToCpu interface just support kHost, kARM, kCUDA"; } } template void Tensor::CopyFromCpu(const int *); template void Tensor::CopyFromCpu(const float *); template void Tensor::CopyFromCpu(const int8_t *); template void Tensor::CopyFromCpu(const int *); template void Tensor::CopyFromCpu(const float *); template void Tensor::CopyFromCpu(const int8_t *); template void Tensor::CopyFromCpu(const int *); template void Tensor::CopyFromCpu(const float *); template void Tensor::CopyFromCpu(const int8_t *); template void Tensor::CopyToCpu(int8_t *) const; template void Tensor::CopyToCpu(float *) const; template void Tensor::CopyToCpu(int *) const; shape_t Tensor::shape() const { return ctensor(raw_tensor_)->dims().Vectorize(); } TargetType Tensor::target() const { auto type = ctensor(raw_tensor_)->target(); if (type == TargetType::kUnk) { CHECK(false) << "This tensor was not initialized."; } return type; } PrecisionType Tensor::precision() const { auto precision = ctensor(raw_tensor_)->precision(); if (precision == PrecisionType::kUnk) { CHECK(false) << "This tensor was not initialized."; } return precision; } lod_t Tensor::lod() const { return ctensor(raw_tensor_)->lod(); } void Tensor::SetLoD(const lod_t &lod) { tensor(raw_tensor_)->set_lod(lod); } void PaddlePredictor::SaveOptimizedModel(const std::string &model_dir, LiteModelType model_type, bool record_info) { LOG(FATAL) << "The SaveOptimizedModel API is only supported by CxxConfig predictor."; } template std::shared_ptr CreatePaddlePredictor(const ConfigT &) { return std::shared_ptr(); } ConfigBase::ConfigBase(PowerMode mode, int threads) { #ifdef LITE_WITH_ARM lite::DeviceInfo::Init(); lite::DeviceInfo::Global().SetRunMode(mode, threads); mode_ = lite::DeviceInfo::Global().mode(); threads_ = lite::DeviceInfo::Global().threads(); #endif } void ConfigBase::set_power_mode(paddle::lite_api::PowerMode mode) { #ifdef LITE_WITH_ARM lite::DeviceInfo::Global().SetRunMode(mode, threads_); mode_ = lite::DeviceInfo::Global().mode(); threads_ = lite::DeviceInfo::Global().threads(); #endif } void ConfigBase::set_threads(int threads) { #ifdef LITE_WITH_ARM lite::DeviceInfo::Global().SetRunMode(mode_, threads); mode_ = lite::DeviceInfo::Global().mode(); threads_ = lite::DeviceInfo::Global().threads(); #endif } } // namespace lite_api } // namespace paddle