// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "lite/api/paddle_use_kernels.h" #include "lite/api/paddle_use_ops.h" #include "lite/core/arena/framework.h" #include "lite/tests/utils/fill_data.h" namespace paddle { namespace lite { class GridSamplerComputeTest : public arena::TestCase { protected: // common attributes for this op. std::string input_ = "x"; std::string output_ = "y"; std::string grid_ = "grid"; DDim dims_{{4, 5, 19, 19}}; public: GridSamplerComputeTest(const Place& place, const std::string& alias, DDim dims) : TestCase(place, alias), dims_(dims) {} void RunBaseline(Scope* scope) override { auto x = scope->FindTensor(input_); auto grid = scope->FindTensor(grid_); auto out = scope->NewTensor(output_); CHECK(out); out->Resize(dims_); const float* x_data = x->data(); const float* grid_data = grid->data(); float* out_data = out->mutable_data(); int num = x->dims()[0]; int channel = x->dims()[1]; int height = x->dims()[2]; int width = x->dims()[3]; int spatial_size = height * width; auto inbound = [](int x, int y, float x_max, float y_max) { if (x < 0 || x > x_max || y < 0 || y > y_max) { return false; } return true; }; for (int n = 0; n < num; ++n) { const float* x_n = x_data + n * channel * height * width; float* out_n = out_data + n * channel * height * width; const float* grid_n = grid_data + n * height * width * 2; for (int c = 0; c < channel; ++c) { const float* x_c = x_n + c * spatial_size; float* out_c = out_n + c * spatial_size; for (int s = 0; s < spatial_size; ++s) { float x = grid_n[s * 2]; float y = grid_n[s * 2 + 1]; float xwf = (x + 1.f) * 0.5 * (width - 1); float ynf = (y + 1.f) * 0.5 * (height - 1); int xw = floor(xwf); int xe = xw + 1; int yn = floor(ynf); int ys = yn + 1; float dw = xwf - xw; float de = xe - xwf; float dn = ynf - yn; float ds = ys - ynf; float wn = inbound(xw, yn, static_cast(width - 1), static_cast(height - 1)) ? x_c[yn * width + xw] : 0.f; float en = inbound(xe, yn, static_cast(width - 1), static_cast(height - 1)) ? x_c[yn * width + xe] : 0.f; float ws = inbound(xw, ys, static_cast(width - 1), static_cast(height - 1)) ? x_c[ys * width + xw] : 0.f; float es = inbound(xe, ys, static_cast(width - 1), static_cast(height - 1)) ? x_c[ys * width + xe] : 0.f; out_c[s] = wn * de * ds + en * dw * ds + ws * de * dn + es * dw * dn; } } } } void PrepareOpDesc(cpp::OpDesc* op_desc) { op_desc->SetType("grid_sampler"); op_desc->SetInput("X", {input_}); op_desc->SetInput("Grid", {grid_}); op_desc->SetOutput("Output", {output_}); } void PrepareData() override { std::vector din(dims_.production()); fill_data_rand(din.data(), -1.f, 1.f, dims_.production()); DDim gird_dims{{dims_[0], dims_[2], dims_[3], 2}}; std::vector grid(gird_dims.production()); fill_data_rand(grid.data(), -1.f, 1.f, gird_dims.production()); SetCommonTensor(input_, dims_, din.data()); SetCommonTensor(grid_, gird_dims, grid.data()); } }; void test_grid_sampler(Place place) { for (auto& n : {1, 13}) { for (auto& c : {1, 3, 8}) { for (auto& h : {1, 3, 8, 64}) { for (auto& w : {2, 4, 9, 63}) { DDim dim_in({n, c, h, w}); std::unique_ptr tester( new GridSamplerComputeTest(place, "def", dim_in)); #ifdef LITE_WITH_ARM auto& ctx = tester->context()->As(); ctx.SetRunMode(lite_api::LITE_POWER_HIGH, 1); #endif arena::Arena arena(std::move(tester), place, 6e-5); LOG(INFO) << "run n: " << n << ", c: " << c << ", h: " << h << ", w: " << w; if (!arena.TestPrecision()) { LOG(ERROR) << "No Pass!!"; return; } // if you want to test this op performance, uncomment the following // line // arena.TestPerformance(); } } } } } TEST(GridSampler, precision) { #ifdef LITE_WITH_ARM Place place(TARGET(kARM)); test_grid_sampler(place); #endif } } // namespace lite } // namespace paddle