// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include #include "lite/core/op_lite.h" #include "lite/core/tensor.h" namespace paddle { namespace lite { namespace subgraph { namespace xpu { // Type/tensor converters for converting Paddle type/tensor to XPU type/tensor bool HasInputArg(const OpInfo* op_info, const Scope* scope, const std::string& argname); xtcl::DataType CvtPrecisionType(PrecisionType in_type); DLDataType CvtDLDataType(PrecisionType in_type); DLDeviceType CvtDLDeviceType(TargetType in_type); template xtcl::Array CvtShape(const std::vector& in_shape) { xtcl::Array out_shape; for (auto dim : in_shape) { out_shape.push_back(dim); } return out_shape; } template xtcl::Array CvtShape(const std::vector& in_shape) { return CvtShape(std::vector(in_shape.begin(), in_shape.end())); } template xtcl::Array CvtShape(const DDim& in_dims) { return CvtShape(in_dims.Vectorize()); } std::shared_ptr CvtTensor( const Tensor& in_tensor, std::vector out_shape = {}, DataLayoutType in_layout = DATALAYOUT(kNCHW)); } // namespace xpu } // namespace subgraph } // namespace lite } // namespace paddle