// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include #include #include #include "NeuronAdapter.h" #include "lite/core/op_lite.h" #include "lite/utils/macros.h" namespace paddle { namespace lite { namespace subgraph { namespace apu { // typedef to the build functions pointer signatures typedef int (*Neuron_getVersion)(uint32_t* version); typedef int (*NeuronModel_create)(NeuronModel** model); typedef void (*NeuronModel_free)(NeuronModel* model); typedef int (*NeuronModel_finish)(NeuronModel* model); typedef int (*NeuronModel_addOperand)(NeuronModel* model, const NeuronOperandType* type); typedef int (*NeuronModel_setOperandValue)(NeuronModel* model, int32_t index, const void* buffer, size_t length); typedef int (*NeuronModel_addOperation)(NeuronModel* model, NeuronOperationType type, uint32_t inputCount, const uint32_t* inputs, uint32_t outputCount, const uint32_t* outputs); typedef int (*NeuronModel_identifyInputsAndOutputs)(NeuronModel* model, uint32_t inputCount, const uint32_t* inputs, uint32_t outputCount, const uint32_t* outputs); typedef int (*NeuronModel_setOperandSymmPerChannelQuantParams)( NeuronModel* model, int32_t index, const NeuronSymmPerChannelQuantParams* channelQuant); typedef int (*NeuronExecution_create)(NeuronCompilation* compilation, NeuronExecution** execution); typedef void (*NeuronExecution_free)(NeuronExecution* execution); typedef int (*NeuronExecution_setInput)(NeuronExecution* execution, int32_t index, const NeuronOperandType* type, const void* buffer, size_t length); typedef int (*NeuronExecution_setOutput)(NeuronExecution* execution, int32_t index, const NeuronOperandType* type, void* buffer, size_t length); typedef int (*NeuronExecution_compute)(NeuronExecution* execution); void* LoadFunc(void* libHandle, const char* name); #define LOAD_FUNCTIONS(libHandle, FUNC_NAME, VARIABLE_NAME) \ FUNC_NAME VARIABLE_NAME = \ reinterpret_cast(LoadFunc(libHandle, #FUNC_NAME)); // Type/tensor converters for converting Paddle type/tensor to HiAI type/tensor bool HasInputArg(const OpInfo* op_info, const Scope* scope, const std::string& argname); void insert_transpose_node(void* ctx, const std::string& input_name, const std::string& output_name, std::vector input_shape, std::vector output_shape, std::vector axis, float scale, int32_t zeroPoint); void transpose(const int8_t* input_data, uint8_t* output_data, std::vector input_shape, std::vector axis); void transposeAsym(const int8_t* input_data, uint8_t* output_data, std::vector input_shape, std::vector axis); void float2int32(const float* bias_data, float input_scale, std::vector weight_scale, int32_t* int32_bias_data); } // namespace apu } // namespace subgraph } // namespace lite } // namespace paddle