// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/arm/sgd_compute.h" #include "lite/core/op_registry.h" namespace paddle { namespace lite { namespace kernels { namespace arm { void SGDCompute::Run() { auto& param = this->Param(); const auto* parameter = param.Param; const auto* grad = param.Grad; const auto* lr_tensor = param.LearningRate; auto* parameter_output = param.ParamOut; auto dims = parameter->dims(); auto parameter_data = parameter->data(); auto grad_data = grad->data(); auto lr = *(lr_tensor->data()); auto parameter_out_data = parameter_output->mutable_data(); int element_num = dims.production(); #pragma omp parallel for for (int i = 0; i < element_num; i++) { parameter_out_data[i] = parameter_data[i] - lr * grad_data[i]; } } } // namespace arm } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL( sgd, kARM, kFloat, kNCHW, paddle::lite::kernels::arm::SGDCompute, def) .BindInput("Param", {LiteType::GetTensorTy(TARGET(kARM))}) .BindInput("Grad", {LiteType::GetTensorTy(TARGET(kARM))}) .BindInput("LearningRate", {LiteType::GetTensorTy(TARGET(kARM))}) .BindOutput("ParamOut", {LiteType::GetTensorTy(TARGET(kARM))}) .Finalize();