#include "src/enforce.h" #include "src/var_desc.h" #include "src/program_desc.h" #include #include #include #include #include #include #include "src/framework.pb-c.h" #include "src/protobuf-c.h" #include #include #include const size_t kSize64 = sizeof(uint64_t); const size_t kSize32 = sizeof(uint32_t); char *Get_binary_data(const std::string &filename) { FILE *file = fopen(filename.c_str(), "rb"); PADDLE_MOBILE_ENFORCE(file != nullptr, "can't open file: %s ", filename.c_str()); fseek(file, 0, SEEK_END); int64_t size = ftell(file); PADDLE_MOBILE_ENFORCE(size > 0, "size is too small"); rewind(file); auto *data = new char[size]; size_t bytes_read = fread(data, 1, static_cast(size), file); PADDLE_MOBILE_ENFORCE(bytes_read == size, "read binary file bytes do not match with fseek"); fclose(file); return data; } static size_t ReadBuffer(const char *file_name, uint8_t **out) { FILE *fp; fp = fopen(file_name, "rb"); PADDLE_MOBILE_ENFORCE(fp != nullptr, " %s open failed !", file_name); fseek(fp, 0, SEEK_END); auto size = static_cast(ftell(fp)); rewind(fp); *out = reinterpret_cast(malloc(size)); size_t cur_len = 0; size_t nread; while ((nread = fread(*out + cur_len, 1, size - cur_len, fp)) != 0) { cur_len += nread; } fclose(fp); return cur_len; } std::shared_ptr loadParams(const std::string &model_path) { PaddleMobile__Framework__Proto__ProgramDesc *c_program; uint8_t *buf = nullptr; size_t read_size = ReadBuffer(model_path.c_str(), &buf); PADDLE_MOBILE_ENFORCE(buf != nullptr, "read from __model__ is null"); c_program = paddle_mobile__framework__proto__program_desc__unpack( nullptr, read_size, buf); PADDLE_MOBILE_ENFORCE(c_program != nullptr, "program is null"); auto originProgramDesc = std::make_shared(c_program); return originProgramDesc; } void LoadWithDumpForInt8(const paddle_mobile::framework::VarDesc &var_desc, char **dataP, FILE *out_file) { // 1. version uint32_t version = *reinterpret_cast(*dataP); // write version fwrite(&version, kSize32, 1, out_file); *dataP += kSize32; // 2 Lod information auto *lod_level_ptr = new uint64_t(); memcpy(lod_level_ptr, *dataP, kSize64); uint64_t lod_level = 0; // write lod Information fwrite(&lod_level, kSize64, 1, out_file); delete lod_level_ptr; *dataP += kSize64; for (uint64_t i = 0; i < lod_level; ++i) { uint64_t size = *reinterpret_cast(*dataP); // write lod size fwrite(&size, kSize64, 1, out_file); (*dataP) += kSize64; std::vector tmp(size / sizeof(size_t)); for (unsigned long &k : tmp) { k = *reinterpret_cast(*dataP); (*dataP) += sizeof(size_t); } // write lod size vector fwrite(&tmp, sizeof(size_t), tmp.size(), out_file); } // 3. tensor version uint32_t tensor_version = *reinterpret_cast(*dataP); // write tensor version fwrite(&tensor_version, kSize32, 1, out_file); (*dataP) += kSize32; // 4. tensor desc int32_t size = *reinterpret_cast(*dataP); // write tensor desc fwrite(&size, sizeof(int32_t), 1, out_file); (*dataP) += sizeof(int32_t); std::unique_ptr buf(new char[size]); for (int m = 0; m < size; ++m) { buf.get()[m] = (*dataP)[m]; } fwrite(buf.get(), sizeof(char), static_cast(size), out_file); (*dataP) += (sizeof(char) * size); const paddle_mobile::framework::TensorDesc &desc = var_desc.Tensor_desc(); int memory_size = 1; for (auto l : desc.Dims()) { memory_size *= l; } void *memory = nullptr; int type_size = 0; switch (desc.DataType()) { case paddle_mobile::framework::VARTYPE_TYPE_FP16: type_size = 2; break; case paddle_mobile::framework::VARTYPE_TYPE_FP32: type_size = 4; break; case paddle_mobile::framework::VARTYPE_TYPE_FP64: type_size = 8; break; case paddle_mobile::framework::VARTYPE_TYPE_INT32: type_size = 4; break; case paddle_mobile::framework::VARTYPE_TYPE_INT64: type_size = 8; break; case paddle_mobile::framework::VARTYPE_TYPE_BOOL: type_size = 1; break; default: break; } size_t tensorSize = sizeof(char) * memory_size * type_size; memory = new char[tensorSize]; for (int n = 0; n < tensorSize; ++n) { static_cast(memory)[n] = (*dataP)[n]; } *dataP += tensorSize; // for float 32 float min_value = std::numeric_limits::max(); float max_value = std::numeric_limits::min(); for (int k = 0; k < memory_size; ++k) { min_value = std::min(min_value, static_cast (memory)[k]); max_value = std::max(max_value, static_cast (memory)[k]); } fwrite(&min_value, sizeof(float), 1, out_file); fwrite(&max_value, sizeof(float), 1, out_file); for (int g = 0; g < memory_size; ++g) { float value = static_cast (memory)[g]; auto factor = (uint8_t) round((value - min_value) / (max_value - min_value) * 255); fwrite(&factor, sizeof(uint8_t), 1, out_file); } } void quantificate_combined_int8(const std::string &model_path, const std::string ¶m_path, const std::string ¶m_min_path) { auto program = loadParams(model_path); char *origin_data = Get_binary_data(param_path); char *data = origin_data; FILE *out_file = fopen(param_min_path.c_str(), "wb"); for (const auto &block : program->Blocks()) { for (const auto &var_desc : block->Vars()) { if (var_desc->Persistable()) { if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") { continue; } LoadWithDumpForInt8(*var_desc, &data, out_file); } } } fclose(out_file); delete origin_data; } void quantificate_seperated_int8(const std::string model_dir, const std::string param_min_path) { auto program = loadParams(model_dir + "/__model__"); std::string shell_command = "mkdir " + param_min_path; system(shell_command.c_str()); for (const auto &block : program->Blocks()) { for (const auto &var_desc : block->Vars()) { if (var_desc->Persistable()) { if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") { continue; } std::string file_name = param_min_path + "/" + var_desc->Name(); FILE *out_file = fopen(file_name.c_str(), "wb"); char *origin_data = Get_binary_data(model_dir + "/" + var_desc->Name()); char *data = origin_data; LoadWithDumpForInt8(*var_desc, &data, out_file); delete origin_data; fclose(out_file); } } } } void LoadWithDumpForFloat32(const paddle_mobile::framework::VarDesc &var_desc, char **dataP, FILE *out_file) { // 1. version uint32_t version = *reinterpret_cast(*dataP); // write version fwrite(&version, kSize32, 1, out_file); *dataP += kSize32; // 2 Lod information auto *lod_level_ptr = new uint64_t(); memcpy(lod_level_ptr, *dataP, kSize64); uint64_t lod_level = 0; // write lod Information fwrite(&lod_level, kSize64, 1, out_file); delete lod_level_ptr; *dataP += kSize64; for (uint64_t i = 0; i < lod_level; ++i) { uint64_t size = *reinterpret_cast(*dataP); // write lod size fwrite(&size, kSize64, 1, out_file); (*dataP) += kSize64; std::vector tmp(size / sizeof(size_t)); for (unsigned long &k : tmp) { k = *reinterpret_cast(*dataP); (*dataP) += sizeof(size_t); } // write lod size vector fwrite(&tmp, sizeof(size_t), tmp.size(), out_file); } // 3. tensor version uint32_t tensor_version = *reinterpret_cast(*dataP); // write tensor version fwrite(&tensor_version, kSize32, 1, out_file); (*dataP) += kSize32; // 4. tensor desc int32_t size = *reinterpret_cast(*dataP); // write tensor desc fwrite(&size, sizeof(int32_t), 1, out_file); (*dataP) += sizeof(int32_t); std::unique_ptr buf(new char[size]); for (int m = 0; m < size; ++m) { buf.get()[m] = (*dataP)[m]; } fwrite(buf.get(), sizeof(char), static_cast(size), out_file); (*dataP) += (sizeof(char) * size); const paddle_mobile::framework::TensorDesc &desc = var_desc.Tensor_desc(); int memory_size = 1; for (auto l : desc.Dims()) { memory_size *= l; } void *memory = nullptr; int type_size = 0; switch (desc.DataType()) { case paddle_mobile::framework::VARTYPE_TYPE_FP16: type_size = 2; break; case paddle_mobile::framework::VARTYPE_TYPE_FP32: type_size = 4; break; case paddle_mobile::framework::VARTYPE_TYPE_FP64: type_size = 8; break; case paddle_mobile::framework::VARTYPE_TYPE_INT32: type_size = 4; break; case paddle_mobile::framework::VARTYPE_TYPE_INT64: type_size = 8; break; case paddle_mobile::framework::VARTYPE_TYPE_BOOL: type_size = 1; break; default: break; } size_t tensorSize = sizeof(char) * memory_size * type_size; memory = new char[tensorSize]; for (int n = 0; n < tensorSize; ++n) { static_cast(memory)[n] = (*dataP)[n]; } *dataP += tensorSize; // for float 32 float min_value = std::numeric_limits::max(); float max_value = std::numeric_limits::min(); for (int k = 0; k < memory_size; ++k) { min_value = std::min(min_value, static_cast (memory)[k]); max_value = std::max(max_value, static_cast (memory)[k]); } float diff = 0.0; for (int g = 0; g < memory_size; ++g) { float value = static_cast (memory)[g]; auto factor = (uint8_t) round((value - min_value) / (max_value - min_value) * 255); float value_quantized = min_value + (factor / 255.0) * (max_value - min_value); diff += abs(value - value_quantized); fwrite(&value_quantized, sizeof(float), 1, out_file); } std::cout << "avg diff caused by quantization for var " << var_desc.Name() << " is: " << diff << std::endl; } void quantificate_combined_float32(const std::string &model_path, const std::string ¶m_path, const std::string ¶m_min_path) { auto program = loadParams(model_path); char *origin_data = Get_binary_data(param_path); char *data = origin_data; FILE *out_file = fopen(param_min_path.c_str(), "wb"); for (const auto &block : program->Blocks()) { for (const auto &var_desc : block->Vars()) { if (var_desc->Persistable()) { if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") { continue; } LoadWithDumpForFloat32(*var_desc, &data, out_file); } } } fclose(out_file); delete origin_data; } void quantificate_seperated_float32(const std::string model_dir, const std::string param_min_path) { auto program = loadParams(model_dir + "/__model__"); std::string shell_command = "mkdir " + param_min_path; system(shell_command.c_str()); for (const auto &block : program->Blocks()) { for (const auto &var_desc : block->Vars()) { if (var_desc->Persistable()) { if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") { continue; } std::string file_name = param_min_path + "/" + var_desc->Name(); FILE *out_file = fopen(file_name.c_str(), "wb"); char *origin_data = Get_binary_data(model_dir + "/" + var_desc->Name()); char *data = origin_data; LoadWithDumpForFloat32(*var_desc, &data, out_file); delete origin_data; fclose(out_file); } } } } int main(int argc, char **argv) { const std::string kNoteEg = "( eg: ./quantify 1 your_combined_model_path output_path or ./quantify 0 your_seperated_model_path output_path or ./quantify 3 your_seperated_model_path output_path or ./quantify 2 your_seperated_model_path output_path)"; PADDLE_MOBILE_ENFORCE(argc > 1, "wee need params.%s ", kNoteEg.c_str()); std::string action_type = argv[1]; PADDLE_MOBILE_ENFORCE(argc > 1 && (action_type) == "0" || action_type == "1" || action_type == "2" || action_type == "3", "only 0, 1, 2 or 3 supported, current is %s %s ", action_type.c_str(), kNoteEg.c_str()); PADDLE_MOBILE_ENFORCE(argc > 2, "we need your model path. %s ", kNoteEg.c_str()); std::string base_path = argv[2]; PADDLE_MOBILE_ENFORCE(argc > 3, "we need your output path. %s ", kNoteEg.c_str()); std::string output_path = argv[3]; if (action_type == "0") { // for seperated const std::string &seperated_min_dir = output_path; quantificate_seperated_int8(base_path, seperated_min_dir); return 0; } if (action_type == "1") { // for combined const std::string &combined_min_dir = output_path; std::string model_path = base_path + "/model"; std::string param_path = base_path + "/params"; quantificate_combined_int8(model_path, param_path, combined_min_dir); return 0; } if (action_type == "2") { // for seperated const std::string &seperated_min_dir = output_path; quantificate_seperated_float32(base_path, seperated_min_dir); return 0; } if (action_type == "3") { // for combined const std::string &combined_min_dir = output_path; std::string model_path = base_path + "/model"; std::string param_path = base_path + "/params"; quantificate_combined_float32(model_path, param_path, combined_min_dir); return 0; } return -1; }