// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/operators/transpose_op.h" #include "lite/core/op_registry.h" namespace paddle { namespace lite { namespace operators { // Transpose bool TransposeOp::CheckShape() const { CHECK_OR_FALSE(param_.x); CHECK_OR_FALSE(param_.output); auto x_dims = param_.x->dims(); auto x_rank = x_dims.size(); std::vector axis = param_.axis; size_t axis_size = axis.size(); // "The input tensor's rank(%d) should be equal to the axis's size(%d)", // x_rank, axis_size CHECK_OR_FALSE(x_rank == axis_size); std::vector count(axis_size, 0); for (size_t i = 0; i < axis_size; i++) { // Each element of Attribute axis should be a unique value // range from 0 to (dims - 1), // where the dims is the axis's size CHECK_OR_FALSE(axis[i] < static_cast(axis_size) && ++count[axis[i]] == 1); } return true; } bool TransposeOp::InferShape() const { CHECK_OR_FALSE(param_.x); CHECK_OR_FALSE(param_.output); auto x_dims = param_.x->dims(); auto x_rank = x_dims.size(); std::vector axis = param_.axis; size_t axis_size = axis.size(); // "The input tensor's rank(%d) should be equal to the axis's size(%d)", // x_rank, axis_size CHECK_OR_FALSE(x_rank == axis_size); std::vector count(axis_size, 0); for (size_t i = 0; i < axis_size; i++) { // Each element of Attribute axis should be a unique value // range from 0 to (dims - 1), // where the dims is the axis's size CHECK_OR_FALSE(axis[i] < static_cast(axis_size) && ++count[axis[i]] == 1); } lite::DDim out_dims(x_dims); for (size_t i = 0; i < axis_size; i++) { out_dims[i] = x_dims[axis[i]]; } param_.output->Resize(out_dims); return true; } bool TransposeOp::AttachImpl(const cpp::OpDesc &op_desc, lite::Scope *scope) { auto x = op_desc.Input("X").front(); auto out = op_desc.Output("Out").front(); CHECK(scope->FindVar(x)); CHECK(scope->FindVar(out)); param_.x = GetVar(scope, x); param_.output = GetMutableVar(scope, out); param_.axis = op_desc.GetAttr>("axis"); if (op_desc.HasAttr("use_mkldnn")) { param_.use_mkldnn = op_desc.GetAttr("use_mkldnn"); } if (op_desc.HasAttr("data_format")) { param_.data_format = op_desc.GetAttr("data_format"); } return true; } // Transpose2 bool Transpose2Op::CheckShape() const { CHECK_OR_FALSE(param_.x); CHECK_OR_FALSE(param_.output); auto x_dims = param_.x->dims(); auto x_rank = x_dims.size(); std::vector axis = param_.axis; size_t axis_size = axis.size(); // "The input tensor's rank(%d) should be equal to the axis's size(%d)", // x_rank, axis_size CHECK_OR_FALSE(x_rank == axis_size); std::vector count(axis_size, 0); for (size_t i = 0; i < axis_size; i++) { // Each element of Attribute axis should be a unique value // range from 0 to (dims - 1), // where the dims is the axis's size CHECK_OR_FALSE(axis[i] < static_cast(axis_size) && ++count[axis[i]] == 1); } return true; } bool Transpose2Op::InferShape() const { CHECK_OR_FALSE(param_.x); CHECK_OR_FALSE(param_.output); auto x_dims = param_.x->dims(); auto x_rank = x_dims.size(); std::vector axis = param_.axis; size_t axis_size = axis.size(); // "The input tensor's rank(%d) should be equal to the axis's size(%d)", // x_rank, axis_size CHECK_OR_FALSE(x_rank == axis_size); std::vector count(axis_size, 0); for (size_t i = 0; i < axis_size; i++) { // Each element of Attribute axis should be a unique value // range from 0 to (dims - 1), // where the dims is the axis's size CHECK_OR_FALSE(axis[i] < static_cast(axis_size) && ++count[axis[i]] == 1); } lite::DDim out_dims(x_dims); for (size_t i = 0; i < axis_size; i++) { out_dims[i] = x_dims[axis[i]]; } param_.output->Resize(out_dims); return true; } bool Transpose2Op::AttachImpl(const cpp::OpDesc &op_desc, lite::Scope *scope) { auto x = op_desc.Input("X").front(); auto out = op_desc.Output("Out").front(); CHECK(scope->FindVar(x)); CHECK(scope->FindVar(out)); param_.x = GetVar(scope, x); param_.output = GetMutableVar(scope, out); param_.axis = op_desc.GetAttr>("axis"); if (op_desc.HasAttr("use_mkldnn")) { param_.use_mkldnn = op_desc.GetAttr("use_mkldnn"); } if (op_desc.HasAttr("data_format")) { param_.data_format = op_desc.GetAttr("data_format"); } if (op_desc.HasOutput("XShape")) { auto xshape_var = scope->FindVar(op_desc.Output("XShape").front()); param_.xshape = xshape_var->GetMutable(); } return true; } } // namespace operators } // namespace lite } // namespace paddle REGISTER_LITE_OP(transpose, paddle::lite::operators::TransposeOp); REGISTER_LITE_OP(transpose2, paddle::lite::operators::Transpose2Op);