// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/operators/shuffle_channel_op.h" #include #include "lite/core/op_registry.h" #include "lite/npu/bridge/registry.h" #include "lite/npu/bridge/test_helper.h" namespace paddle { namespace lite { namespace npu { namespace bridge { void shuffle_channel_ref( const std::shared_ptr op) { Scope* scope = op->scope(); const OpInfo* op_info = op->op_info(); auto x = scope->FindVar(op_info->Input("X").front())->GetMutable(); auto out = scope->FindVar(op_info->Output("Out").front())->GetMutable(); auto x_data = x->mutable_data(); auto out_data = out->mutable_data(); int group = op_info->GetAttr("group"); auto x_dims = x->dims(); int n_size = x_dims.production() / x_dims[0]; int c_size = n_size / x_dims[1]; for (int n = 0; n < x_dims[0]; n++) { int g_num = x_dims[1] / group; auto tmp_out_data = out_data; for (int g = 0; g < g_num; g++) { auto tmp_x_data = x_data + g * c_size; for (int i = 0; i < group; i++) { std::memcpy(tmp_out_data, tmp_x_data + i * g_num * c_size, c_size * sizeof(float)); tmp_out_data += c_size; } } x_data += n_size; out_data += n_size; } } void test_shuffle_channel(int bs, int ic, int ih, int iw, int group) { // prepare input&output variables Scope scope; std::string x_var_name = "x"; std::string out_var_name = "out"; std::string out_ref_var_name = "out_ref"; auto* x = scope.Var(x_var_name)->GetMutable(); auto* out = scope.Var(out_var_name)->GetMutable(); auto* out_ref = scope.Var(out_ref_var_name)->GetMutable(); x->Resize({bs, ic, ih, iw}); // initialize input&output data FillTensor(x); // initialize op desc cpp::OpDesc opdesc; opdesc.SetType("shuffle_channel"); opdesc.SetInput("X", {x_var_name}); opdesc.SetOutput("Out", {out_var_name}); opdesc.SetAttr("group", group); // create and convert op to NPU model, then run it on NPU auto op = CreateOp(opdesc, &scope); LauchOp(op, {x_var_name}, {out_var_name}); out_ref->CopyDataFrom(*out); // execute reference implementation and save to output tensor shuffle_channel_ref(op); // compare results auto* out_data = out->mutable_data(); auto* out_ref_data = out_ref->mutable_data(); for (int i = 0; i < out->dims().production(); i++) { EXPECT_NEAR(out_data[i], out_ref_data[i], 1e-2); } } TEST(NPUBridges, softmax) { for (auto bs : {1, 4}) { for (auto ic : {1, 24, 35}) { for (auto ih : {1, 4}) { for (auto iw : {1, 4}) { for (auto group : {1, 3, 7, 24, 35}) { if (ic % group != 0) continue; test_shuffle_channel(bs, ic, ih, iw, group); } } } } } } } // namespace bridge } // namespace npu } // namespace lite } // namespace paddle USE_LITE_OP(shuffle_channel); USE_NPU_BRIDGE(shuffle_channel);