// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/arm/matmul_compute.h" #include #include "lite/arm/math/funcs.h" #include "lite/core/op_registry.h" #include "lite/core/type_system.h" namespace paddle { namespace lite { namespace kernels { namespace arm { void MatMulCompute::PrepareForRun() { auto& ctx = this->ctx_->template As(); } void MatMulCompute::Run() { auto& param = Param(); const auto* x_data = param.X->data(); const auto* y_data = param.Y->data(); auto* o_data = param.Out->mutable_data(); auto x_dims = param.X->dims(); auto y_dims = param.Y->dims(); bool x_transpose = param.transpose_X; bool y_transpose = param.transpose_Y; float alpha = param.alpha; auto& ctx = this->ctx_->template As(); if (x_dims.size() > 2 && y_dims.size() >= 2) { // x: [B, ..., M, K], y: [B, ..., K, N], out: [B, ..., M, N] // x: [B, M, K], y: [K, N], out: [B, M, N] if (x_transpose || y_transpose) { LOG(FATAL) << "not supported transpose for x or y."; } CHECK_EQ(x_dims[x_dims.size() - 1], y_dims[y_dims.size() - 2]) << "not supported x_dims(" << x_dims << ") and y_dims(" << y_dims << ")"; if (y_dims.size() > 2) { m_ = x_dims[x_dims.size() - 2]; k_ = y_dims[y_dims.size() - 2]; n_ = y_dims[y_dims.size() - 1]; int hblock = lite::arm::math::get_hblock(ctx.arch()); int m_round = 0; m_round = hblock * ((m_ + hblock - 1) / hblock); ctx.ExtendWorkspace(m_round * k_ * sizeof(float)); int x_inner = x_dims[x_dims.size() - 2] * x_dims[x_dims.size() - 1]; int y_inner = y_dims[y_dims.size() - 2] * y_dims[y_dims.size() - 1]; int out_inner = x_dims[x_dims.size() - 2] * y_dims[y_dims.size() - 1]; if (n_ == 1) { for (size_t i = 0; i < x_dims.count(0, x_dims.size() - 2); ++i) { lite::arm::math::sgemv(x_data + i * x_inner, y_data + i * y_inner, o_data + i * out_inner, false, m_, k_, false, nullptr, false); } if (fabsf(alpha - 1.f) > 1e-8f) { for (size_t i = 0; i < param.Out->dims().production(); ++i) { o_data[i] *= alpha; } } } else { for (size_t i = 0; i < x_dims.count(0, x_dims.size() - 2); ++i) { float* packed_x = static_cast(ctx.workspace_data()) + ctx.llc_size() / sizeof(float); lite::arm::math::prepackA(packed_x, x_data + i * x_inner, alpha, k_, 0, m_, 0, k_, false, &ctx); int ldb = n_; if (y_transpose) { ldb = k_; } lite::arm::math::sgemm_prepack(y_transpose, m_, n_, k_, packed_x, y_data + i * y_inner, ldb, 0.f, o_data + i * out_inner, n_, nullptr, false, false, &ctx); } } } else { m_ = x_dims[x_dims.size() - 2]; k_ = y_dims[0]; n_ = y_dims[1]; int hblock = lite::arm::math::get_hblock(ctx.arch()); int m_round = 0; m_round = hblock * ((m_ + hblock - 1) / hblock); ctx.ExtendWorkspace(m_round * k_ * sizeof(float)); int x_inner = x_dims[x_dims.size() - 2] * x_dims[x_dims.size() - 1]; int out_inner = x_dims[x_dims.size() - 2] * y_dims[1]; if (n_ == 1) { for (size_t i = 0; i < x_dims.count(0, x_dims.size() - 2); ++i) { lite::arm::math::sgemv(x_data + i * x_inner, y_data, o_data + i * out_inner, false, m_, k_, false, nullptr, false); } if (fabsf(param.alpha - 1.f) > 1e-8f) { for (size_t i = 0; i < param.Out->dims().production(); ++i) { o_data[i] *= param.alpha; } } } else { for (size_t i = 0; i < x_dims.count(0, x_dims.size() - 2); ++i) { float* packed_x = static_cast(ctx.workspace_data()) + ctx.llc_size() / sizeof(float); lite::arm::math::prepackA(packed_x, x_data + i * x_inner, alpha, k_, 0, m_, 0, k_, false, &ctx); int ldb = n_; if (y_transpose) { ldb = k_; } lite::arm::math::sgemm_prepack(y_transpose, m_, n_, k_, packed_x, y_data, ldb, 0.f, o_data + i * out_inner, n_, nullptr, false, false, &ctx); } } } } else if (x_dims.size() == 2 && y_dims.size() == 2) { // x: [M, K], y: [K, N], out: [M, N] if (!x_transpose && !y_transpose) { CHECK_EQ(x_dims[1], y_dims[0]) << "not supported x_dims(" << x_dims << ") and y_dims(" << y_dims << "), x_transpose is " << x_transpose << ", y_transpose is " << y_transpose; } else if (!x_transpose && y_transpose) { CHECK_EQ(x_dims[1], y_dims[1]) << "not supported x_dims(" << x_dims << ") and y_dims(" << y_dims << "), x_transpose is " << x_transpose << ", y_transpose is " << y_transpose; } else if (x_transpose && !y_transpose) { CHECK_EQ(x_dims[0], y_dims[0]) << "not supported x_dims(" << x_dims << ") and y_dims(" << y_dims << "), x_transpose is " << x_transpose << ", y_transpose is " << y_transpose; } else { CHECK_EQ(x_dims[0], y_dims[1]) << "not supported x_dims(" << x_dims << ") and y_dims(" << y_dims << "), x_transpose is " << x_transpose << ", y_transpose is " << y_transpose; } // not supported transpose if (x_transpose || y_transpose) { LOG(FATAL) << "not supported transpose for x and y."; } m_ = x_dims[0]; k_ = x_dims[1]; n_ = y_dims[1]; int hblock = lite::arm::math::get_hblock(ctx.arch()); int m_round = 0; m_round = hblock * ((m_ + hblock - 1) / hblock); ctx.ExtendWorkspace(m_round * k_ * sizeof(float)); if (n_ == 1) { lite::arm::math::sgemv( x_data, y_data, o_data, x_transpose, m_, k_, false, nullptr, false); if (fabsf(param.alpha - 1.f) > 1e-8f) { for (size_t i = 0; i < param.Out->dims().production(); ++i) { o_data[i] *= param.alpha; } } } else { float* packed_x = static_cast(ctx.workspace_data()) + ctx.llc_size() / sizeof(float); lite::arm::math::prepackA( packed_x, x_data, alpha, k_, 0, m_, 0, k_, x_transpose, &ctx); int ldb = n_; if (y_transpose) { ldb = k_; } lite::arm::math::sgemm_prepack(y_transpose, m_, n_, k_, packed_x, y_data, ldb, 0.f, o_data, n_, nullptr, false, false, &ctx); } } else if (x_dims.size() > 2 && y_dims.size() == 1) { // x: [B, M, K], y: [K], out: [B, M] CHECK_EQ(x_dims[x_dims.size() - 1], y_dims[0]) << "not supported x_dims(" << x_dims << ") and y_dims(" << y_dims << ")"; for (size_t i = 0; i < x_dims.count(0, x_dims.size() - 1); ++i) { o_data[i] = 0; for (size_t j = 0; j < y_dims[0]; ++j) { o_data[i] += x_data[i * y_dims[0] + j] * y_data[j] * alpha; } } } else if (x_dims.size() == 1 && y_dims.size() == 1) { // x: [K], y: [K], out: [1] if (x_dims[0] == y_dims[0] && x_transpose == false && y_transpose == false) { o_data[0] = 0.; for (size_t i = 0; i < x_dims[0]; ++i) { o_data[0] += x_data[i] * y_data[i] * alpha; } } // x: [M], y: [N], x_transpose: true, y_transpose: true, out: [M, N] if (x_transpose == true && y_transpose == true) { m_ = x_dims[0]; k_ = 1; n_ = y_dims[0]; if (n_ == 1) { lite::arm::math::sgemv( x_data, y_data, o_data, false, m_, k_, false, nullptr, false); if (fabsf(alpha - 1.f) > 1e-8f) { for (size_t i = 0; i < param.Out->dims().production(); ++i) { o_data[i] *= alpha; } } } else { float* packed_x = static_cast(ctx.workspace_data()) + ctx.llc_size() / sizeof(float); lite::arm::math::prepackA( packed_x, x_data, alpha, k_, 0, m_, 0, k_, false, &ctx); int ldb = n_; lite::arm::math::sgemm_prepack(false, m_, n_, k_, packed_x, y_data, ldb, 0.f, o_data, n_, nullptr, false, false, &ctx); } } } else { LOG(FATAL) << "not supported x_dims(" << x_dims << ") and y_dims(" << y_dims << ")"; } } } // namespace arm } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL( matmul, kARM, kFloat, kNCHW, paddle::lite::kernels::arm::MatMulCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))}) .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))}) .Finalize();