// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "paddle_api.h" // NOLINT #include "paddle_use_kernels.h" // NOLINT #include "paddle_use_ops.h" // NOLINT #include "paddle_use_passes.h" // NOLINT using namespace paddle::lite_api; // NOLINT DEFINE_string(model_dir, "", "Model dir path."); DEFINE_string(optimized_model_dir, "", "Optimized model dir."); DEFINE_bool(prefer_int8_kernel, false, "Prefer to run model with int8 kernels"); int64_t ShapeProduction(const shape_t& shape) { int64_t res = 1; for (auto i : shape) res *= i; return res; } void RunModel() { // 1. Set CxxConfig CxxConfig config; config.set_model_dir(FLAGS_model_dir); std::vector valid_places{Place{TARGET(kARM), PRECISION(kFloat)}}; if (FLAGS_prefer_int8_kernel) { valid_places.insert(valid_places.begin(), Place{TARGET(kARM), PRECISION(kInt8)}); } config.set_valid_places(valid_places); // 2. Create PaddlePredictor by CxxConfig std::shared_ptr predictor = CreatePaddlePredictor(config); // 3. Save the optimized model // WARN: The `predictor->SaveOptimizedModel` method must be executed // before the `predictor->Run` method. Because some kernels' `PrepareForRun` // method maybe change some parameters' values. predictor->SaveOptimizedModel(FLAGS_optimized_model_dir, LiteModelType::kNaiveBuffer); // 4. Prepare input data std::unique_ptr input_tensor(std::move(predictor->GetInput(0))); input_tensor->Resize(shape_t({1, 3, 224, 224})); auto* data = input_tensor->mutable_data(); for (int i = 0; i < ShapeProduction(input_tensor->shape()); ++i) { data[i] = 1; } // 5. Run predictor predictor->Run(); // 6. Get output std::unique_ptr output_tensor( std::move(predictor->GetOutput(0))); printf("Output dim: %d\n", output_tensor->shape()[1]); for (int i = 0; i < ShapeProduction(output_tensor->shape()); i += 100) { printf("Output[%d]: %f\n", i, output_tensor->data()[i]); } } int main(int argc, char** argv) { google::ParseCommandLineFlags(&argc, &argv, true); RunModel(); return 0; }