// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "lite/api/cxx_api.h" #include "lite/api/lite_api_test_helper.h" #include "lite/api/paddle_use_kernels.h" #include "lite/api/paddle_use_ops.h" #include "lite/api/paddle_use_passes.h" #include "lite/api/test_helper.h" #include "lite/core/op_registry.h" #include "lite/core/tensor.h" namespace paddle { namespace lite { TEST(Mobilenet_v1, test_mobilenetv1_lite_x86) { lite::Predictor predictor; std::vector valid_places({Place{TARGET(kX86), PRECISION(kFloat)}}); std::string model_dir = FLAGS_model_dir; std::vector passes({"static_kernel_pick_pass", "variable_place_inference_pass", "type_target_cast_pass", "variable_place_inference_pass", "io_copy_kernel_pick_pass", "variable_place_inference_pass", "runtime_context_assign_pass"}); predictor.Build(model_dir, "", "", valid_places, passes); auto* input_tensor = predictor.GetInput(0); input_tensor->Resize(DDim(std::vector({1, 3, 224, 224}))); auto* data = input_tensor->mutable_data(); for (int i = 0; i < input_tensor->dims().production(); i++) { data[i] = 1; } for (int i = 0; i < FLAGS_warmup; ++i) { predictor.Run(); } auto start = GetCurrentUS(); for (int i = 0; i < FLAGS_repeats; ++i) { predictor.Run(); } LOG(INFO) << "================== Speed Report ==================="; LOG(INFO) << "Model: " << FLAGS_model_dir << ", warmup: " << FLAGS_warmup << ", repeats: " << FLAGS_repeats << ", spend " << (GetCurrentUS() - start) / FLAGS_repeats / 1000.0 << " ms in average."; std::vector> results; // i = 1 results.emplace_back(std::vector( {0.00019130898, 9.467885e-05, 0.00015971427, 0.0003650665, 0.00026431272, 0.00060884043, 0.0002107942, 0.0015819625, 0.0010323516, 0.00010079765, 0.00011006987, 0.0017364529, 0.0048292773, 0.0013995157, 0.0018453331, 0.0002428986, 0.00020211363, 0.00013668182, 0.0005855956, 0.00025901722})); auto* out = predictor.GetOutput(0); ASSERT_EQ(out->dims().size(), 2); ASSERT_EQ(out->dims()[0], 1); ASSERT_EQ(out->dims()[1], 1000); int step = 50; for (int i = 0; i < results.size(); ++i) { for (int j = 0; j < results[i].size(); ++j) { EXPECT_NEAR(out->data()[j * step + (out->dims()[1] * i)], results[i][j], 1e-6); } } } } // namespace lite } // namespace paddle