// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "lite/api/cxx_api.h" #include "lite/api/paddle_use_kernels.h" #include "lite/api/paddle_use_ops.h" #include "lite/api/paddle_use_passes.h" #include "lite/api/test_helper.h" #include "lite/core/op_registry.h" namespace paddle { namespace lite { #ifdef LITE_WITH_ARM void TestModel(const std::vector& valid_places) { DeviceInfo::Init(); DeviceInfo::Global().SetRunMode(lite_api::LITE_POWER_NO_BIND, FLAGS_threads); lite::Predictor predictor; predictor.Build(FLAGS_model_dir, "", "", valid_places); auto* input_tensor = predictor.GetInput(0); input_tensor->Resize(DDim(std::vector({1, 3, 608, 608}))); auto* data = input_tensor->mutable_data(); auto item_size = input_tensor->dims().production(); for (int i = 0; i < item_size; i++) { data[i] = 50; } auto* img_size = predictor.GetInput(1); img_size->Resize(DDim(std::vector({1, 2}))); auto* size_data = img_size->mutable_data(); size_data[0] = 608; size_data[1] = 608; for (int i = 0; i < FLAGS_warmup; ++i) { predictor.Run(); } auto start = GetCurrentUS(); for (int i = 0; i < FLAGS_repeats; ++i) { predictor.Run(); } LOG(INFO) << "================== Speed Report ==================="; LOG(INFO) << "Model: " << FLAGS_model_dir << ", threads num " << FLAGS_threads << ", warmup: " << FLAGS_warmup << ", repeats: " << FLAGS_repeats << ", spend " << (GetCurrentUS() - start) / FLAGS_repeats / 1000.0 << " ms in average."; std::vector> results; // i = 1 results.emplace_back(std::vector( {0., 0.7803235, 577.7447, 592.5643, 582.15314, 597.3399})); results.emplace_back(std::vector( {0., 0.7643098, 473.50653, 592.58966, 478.26117, 597.2353})); results.emplace_back(std::vector( {0., 0.7614112, 593.06946, 591.99646, 598.64087, 597.553})); results.emplace_back(std::vector( {0., 0.7579255, 161.40321, 592.61694, 166.33885, 597.28406})); results.emplace_back(std::vector( {0., 0.7569634, 193.39563, 592.62164, 198.35269, 597.2968})); results.emplace_back(std::vector( {0., 0.7568337, 297.3981, 592.62024, 302.35202, 597.2969})); results.emplace_back(std::vector( {0., 0.7568283, 265.39816, 592.6203, 270.35214, 597.29694})); results.emplace_back(std::vector( {0., 0.74383223, 33.430492, 592.7017, 38.453976, 597.4267})); results.emplace_back(std::vector( {0., 0.66492873, 9.396143, 576.7084, 15.35708, 581.8059})); results.emplace_back(std::vector( {0., 0.6568178, 9.970305, 145.12535, 15.043035, 149.76646})); auto* out = predictor.GetOutput(0); ASSERT_EQ(out->dims().size(), 2); ASSERT_EQ(out->dims()[0], 100); ASSERT_EQ(out->dims()[1], 6); ASSERT_EQ(out->lod().size(), 1); ASSERT_EQ(out->lod()[0].size(), 2); ASSERT_EQ(out->lod()[0][0], 0); ASSERT_EQ(out->lod()[0][1], 100); int skip = 10; for (int i = 0; i < results.size(); i += skip) { for (int j = 0; j < results[i].size(); ++j) { EXPECT_NEAR( out->data()[j + (out->dims()[1] * i)], results[i][j], 3e-6); } } } TEST(MobileNetV1_YoloV3, test_arm) { std::vector valid_places({ Place{TARGET(kARM), PRECISION(kFloat)}, }); TestModel(valid_places); } #endif // LITE_WITH_ARM } // namespace lite } // namespace paddle