// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/arm/conv_depthwise.h" #include "lite/backends/arm/math/conv_block_utils.h" #include "lite/backends/arm/math/conv_impl.h" namespace paddle { namespace lite { namespace kernels { namespace arm { template <> void DepthwiseConv::PrepareForRun() { auto& param = this->Param(); CHECK(this->ctx_); auto& ctx = this->ctx_->template As(); auto w_dims = param.filter->dims(); auto kw = w_dims[3]; // select dw conv kernel if (kw == 3) { VLOG(5) << "invoke 3x3 dw conv fp32"; // trans weights constexpr int cblock = 4; auto oc = w_dims[0]; auto kh = w_dims[2]; auto cround = ROUNDUP(oc, cblock); weights_.Resize({cround, 1, kh, kw}); // auto w_data = weights_.mutable_data(); // auto w_data_in = param.filter->data(); // lite::arm::math::conv_trans_weights_numc( // w_data_in, w_data, oc, 1, cblock, kh * kw); impl_ = lite::arm::math::conv_depthwise_3x3_fp32; flag_trans_weights_ = false; // flag_trans_weights_ = true; } else if (kw == 5) { VLOG(5) << "invoke 5x5 dw conv fp32"; impl_ = lite::arm::math::conv_depthwise_5x5_fp32; } else { LOG(FATAL) << "this type dw conv not impl"; } } template <> void DepthwiseConv::PrepareForRun() { auto& param = this->Param(); CHECK(this->ctx_); auto& ctx = this->ctx_->template As(); auto w_dims = param.filter->dims(); int kh = w_dims[2]; int kw = w_dims[3]; int oc = w_dims[0]; /// update scale float in_scale = param.input_scale; auto& scale = param.weight_scale; CHECK(scale.size() == 1 || scale.size() == oc) << "weights scale size must = filter size or = 1"; w_scale_.resize(oc); for (int i = 0; i < oc; ++i) { if (scale.size() == 1) { w_scale_[i] = scale[0] * in_scale; } else { w_scale_[i] = scale[i] * in_scale; } } /// select dw conv kernel if (kw == 3) { // trans weights VLOG(5) << "invoke 3x3 dw conv int8 kernel fp32 out"; impl_ = lite::arm::math::conv_depthwise_3x3_int8_fp32; int cround = ROUNDUP(w_dims[0], 8); weights_.Resize({cround / 8, 1, kh * kw, 8}); auto wptr = param.filter->data(); auto wptr_new = weights_.mutable_data(); lite::arm::math::conv_trans_weights_numc(wptr, wptr_new, oc, 1, 8, 9); flag_trans_weights_ = true; } else if (kw == 5) { // trans weights VLOG(5) << "invoke 5x5 dw conv int8 kernel fp32 out"; impl_ = lite::arm::math::conv_depthwise_5x5_int8_fp32; int cround = ROUNDUP(w_dims[0], 8); weights_.Resize({cround / 8, 1, kh * kw, 8}); auto wptr = param.filter->data(); auto wptr_new = weights_.mutable_data(); lite::arm::math::conv_trans_weights_numc(wptr, wptr_new, oc, 1, 8, 25); flag_trans_weights_ = true; } else { LOG(FATAL) << "this type dw conv not impl"; } } template <> void DepthwiseConv::PrepareForRun() { auto& param = this->Param(); CHECK(this->ctx_); auto& ctx = this->ctx_->template As(); auto w_dims = param.filter->dims(); int kw = w_dims[3]; int kh = w_dims[2]; int oc = w_dims[0]; /// update scale float in_scale = param.input_scale; float out_scale = param.output_scale; auto& scale = param.weight_scale; CHECK(scale.size() == 1 || scale.size() == oc) << "weights scale size must = filter size or = 1"; w_scale_.resize(oc); for (int i = 0; i < oc; ++i) { if (scale.size() == 1) { w_scale_[i] = scale[0] * in_scale / out_scale; } else { w_scale_[i] = scale[i] * in_scale / out_scale; } } /// update bias if (param.bias) { bias_.Resize(param.bias->dims()); auto ptr = bias_.mutable_data(); auto ptr_in = param.bias->data(); for (int i = 0; i < bias_.numel(); ++i) { ptr[i] = ptr_in[i] / out_scale; } flag_trans_bias_ = true; } /// select dw conv kernel if (kw == 3) { // trans weights VLOG(5) << "invoke 3x3 dw conv int8 kernel int8 out"; impl_ = lite::arm::math::conv_depthwise_3x3_int8_int8; int cround = ROUNDUP(w_dims[0], 8); weights_.Resize({cround / 8, 1, kh * kw, 8}); auto wptr = param.filter->data(); auto wptr_new = weights_.mutable_data(); lite::arm::math::conv_trans_weights_numc(wptr, wptr_new, oc, 1, 8, 9); flag_trans_weights_ = true; } else if (kw == 5) { // trans weights VLOG(5) << "invoke 5x5 dw conv int8 kernel int8 out"; impl_ = lite::arm::math::conv_depthwise_5x5_int8_int8; int cround = ROUNDUP(w_dims[0], 8); weights_.Resize({cround / 8, 1, kh * kw, 8}); auto wptr = param.filter->data(); auto wptr_new = weights_.mutable_data(); lite::arm::math::conv_trans_weights_numc(wptr, wptr_new, oc, 1, 8, 25); flag_trans_weights_ = true; } else { LOG(FATAL) << "this type dw conv not impl"; } } template <> void DepthwiseConv::Run() { auto& param = this->Param(); CHECK(this->ctx_); auto& ctx = this->ctx_->template As(); const auto* i_data = param.x->data(); const auto* w_data = flag_trans_weights_ ? weights_.data() : param.filter->data(); const auto* b_data = param.bias ? param.bias->data() : nullptr; if (flag_trans_bias_) { b_data = bias_.data(); } auto* o_data = param.output->mutable_data(); auto x_dims = param.x->dims(); auto w_dims = param.filter->dims(); auto o_dims = param.output->dims(); int iw = x_dims[3]; // nchw int ih = x_dims[2]; int ic = x_dims[1]; int bs = x_dims[0]; int oh = o_dims[2]; int ow = o_dims[3]; int oc = o_dims[1]; impl_(i_data, o_data, bs, oc, oh, ow, ic, ih, iw, w_data, b_data, param, &ctx, w_scale_.data()); } template <> void DepthwiseConv::Run() { auto& param = this->Param(); CHECK(this->ctx_); auto& ctx = this->ctx_->template As(); const auto* i_data = param.x->data(); const auto* w_data = flag_trans_weights_ ? weights_.data() : param.filter->data(); const auto* b_data = param.bias ? param.bias->data() : nullptr; if (flag_trans_bias_) { b_data = bias_.data(); } auto* o_data = param.output->mutable_data(); auto x_dims = param.x->dims(); auto w_dims = param.filter->dims(); auto o_dims = param.output->dims(); int iw = x_dims[3]; // nchw int ih = x_dims[2]; int ic = x_dims[1]; int bs = x_dims[0]; int oh = o_dims[2]; int ow = o_dims[3]; int oc = o_dims[1]; impl_(i_data, o_data, bs, oc, oh, ow, ic, ih, iw, w_data, b_data, param, &ctx, w_scale_.data()); } template <> void DepthwiseConv::Run() { auto& param = this->Param(); CHECK(this->ctx_); auto& ctx = this->ctx_->template As(); const auto* i_data = param.x->data(); const auto* w_data = flag_trans_weights_ ? weights_.data() : param.filter->data(); const auto* b_data = param.bias ? param.bias->data() : nullptr; if (flag_trans_bias_) { b_data = bias_.data(); } auto* o_data = param.output->mutable_data(); auto x_dims = param.x->dims(); auto w_dims = param.filter->dims(); auto o_dims = param.output->dims(); int iw = x_dims[3]; // nchw int ih = x_dims[2]; int ic = x_dims[1]; int bs = x_dims[0]; int oh = o_dims[2]; int ow = o_dims[3]; int oc = o_dims[1]; impl_(i_data, o_data, bs, oc, oh, ow, ic, ih, iw, w_data, b_data, param, &ctx, w_scale_.data()); } } // namespace arm } // namespace kernels } // namespace lite } // namespace paddle