/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #import "PaddleMobileCPU.h" #import "framework/load_ops.h" #import "framework/tensor.h" #import "io/paddle_mobile.h" #import #import @interface PaddleMobileCPUResult() -(void)toSetOutput:(float *)output; -(void)toSetOutputSize:(int)outputSize; @end @implementation PaddleMobileCPUResult -(void)releaseOutput { delete [] _output; _output = nil; _outputSize = 0; } -(void)toSetOutput:(float *)output { _output = output; } -(void)toSetOutputSize:(int)outputSize { _outputSize = outputSize; } @end @implementation PaddleMobileCPUConfig -(instancetype)init { if (self = [super init]) { self.threadNum = 1; self.optimize = YES; } return self; } @end @interface PaddleMobileCPU() { paddle_mobile::PaddleMobile *pam_; BOOL loaded_; } @property (strong, nonatomic) PaddleMobileCPUConfig *config; @end @implementation PaddleMobileCPU static std::mutex shared_mutex; - (instancetype)initWithConfig:(PaddleMobileCPUConfig *)config { if (self = [super init]) { paddle_mobile::PaddleMobileConfigInternal configInternal; configInternal.load_when_predict = config.loadWhenPredict; pam_ = new paddle_mobile::PaddleMobile(); _config = config; } return self; } -(instancetype)init { if (self = [super init]) { _config = [[PaddleMobileCPUConfig alloc] init]; pam_ = new paddle_mobile::PaddleMobile(); } return self; } - (void)dealloc { if (pam_) { delete pam_; } } + (instancetype)sharedInstance{ static dispatch_once_t onceToken; static id sharedManager = nil; dispatch_once(&onceToken, ^{ sharedManager = [[[self class] alloc] init]; }); return sharedManager; } - (BOOL)loadModel:(NSString *)modelPath andWeightsPath:(NSString *)weighsPath { std::string model_path_str = std::string([modelPath UTF8String]); std::string weights_path_str = std::string([weighsPath UTF8String]); pam_->SetThreadNum(self.config.threadNum); if (loaded_ = pam_->Load(model_path_str, weights_path_str, self.config.optimize, false, 1, self.config.loddable)) { return YES; } else { return NO; } } - (BOOL)LoadCombinedMemory:(size_t)modelLen andModelBuf:(const uint8_t *)modelBuf andModelParamsLen:(size_t)combinedParamsLen andCombinedParamsBuf:(const uint8_t *)combinedParamsBuf { pam_->SetThreadNum(self.config.threadNum); return loaded_ = pam_->LoadCombinedMemory(modelLen, modelBuf, combinedParamsLen, const_cast(combinedParamsBuf), self.config.optimize, false, 1, self.config.loddable); } - (BOOL)load:(NSString *)modelAndWeightPath{ std::string model_path_str = std::string([modelAndWeightPath UTF8String]); if (loaded_ = pam_->Load(model_path_str, self.config.optimize, false, 1, self.config.loddable)) { return YES; } else { return NO; } } -(void)preprocess:(CGImageRef)image output:(float *)output means:(NSArray *)means scale:(float)scale dim:(NSArray *)dim { std::lock_guard lock(shared_mutex); if (means == nil) { means = @[@0, @0, @0]; } // dim to c++ vector, get numel std::vector dim_vec; int numel = 1; for (int k = 0; k < dim.count; ++k) { int d = dim[k].intValue; numel *= d; dim_vec.push_back(d); } const int sourceRowBytes = CGImageGetBytesPerRow(image); const int imageWidth = CGImageGetWidth(image); const int imageHeight = CGImageGetHeight(image); const int imageChannels = 4; CGDataProviderRef provider = CGImageGetDataProvider(image); CFDataRef cfData = CGDataProviderCopyData(provider); const UInt8 *input = CFDataGetBytePtr(cfData); int wanted_input_width = dim_vec[3]; int wanted_input_height = dim_vec[2]; int wanted_input_channels = dim_vec[1]; for (int c = 0; c < wanted_input_channels; ++c) { float *out_channel = output + c * wanted_input_height * wanted_input_width; for (int y = 0; y < wanted_input_height; ++y) { float *out_row = out_channel + y * wanted_input_width; for (int x = 0; x < wanted_input_width; ++x) { int in_row = (y * imageHeight) / wanted_input_height; int in_col = (x * imageWidth) / wanted_input_width; const UInt8 *in_pixel = input + (in_row * imageWidth * imageChannels) + (in_col * imageChannels); float *out_pos = out_row + x; if (c == 0) { *out_pos = (in_pixel[c] - means[c].floatValue) * scale; }else if (c == 1){ *out_pos = (in_pixel[c] - means[c].floatValue) * scale; }else if (c == 2){ *out_pos = (in_pixel[c] - means[c].floatValue) * scale; } } } } } -(void)preprocess:(const UInt8 *)input output:(float *)output imageWidth:(int)imageWidth imageHeight:(int)imageHeight imageChannels:(int)imageChannels means:(NSArray *)means scale:(float)scale dim:(std::vector)dim{ if (means == nil) { means = @[@0, @0, @0]; } int wanted_input_width = dim[3]; int wanted_input_height = dim[2]; int wanted_input_channels = dim[1]; for (int c = 0; c < wanted_input_channels; ++c) { float *out_channel = output + c * wanted_input_height * wanted_input_width; for (int y = 0; y < wanted_input_height; ++y) { float *out_row = out_channel + y * wanted_input_width; for (int x = 0; x < wanted_input_width; ++x) { int in_row = (y * imageHeight) / wanted_input_height; int in_col = (x * imageWidth) / wanted_input_width; const UInt8 *in_pixel = input + (in_row * imageWidth * imageChannels) + (in_col * imageChannels); float *out_pos = out_row + x; if (c == 0) { *out_pos = (in_pixel[c] - means[c].floatValue) * scale; }else if (c == 1){ *out_pos = (in_pixel[c] - means[c].floatValue) * scale; }else if (c == 2){ *out_pos = (in_pixel[c] - means[c].floatValue) * scale; } } } } } - (PaddleMobileCPUResult *)predictInput:(float *)input dim:(NSArray *)dim { std::lock_guard lock(shared_mutex); if (!loaded_) { printf("PaddleMobile doesn't be loaded yet"); return nil; } if (dim.count != 4) { printf("dim must have 4 elements"); return nil; } // dim to c++ vector, get numel std::vector dim_vec; int numel = 1; for (int k = 0; k < dim.count; ++k) { int d = dim[k].intValue; numel *= d; dim_vec.push_back(d); } paddle_mobile::framework::Tensor input_tensor; paddle_mobile::framework::DDim dims = paddle_mobile::framework::make_ddim(dim_vec); float *input_ptr = input_tensor.mutable_data(dims); memcpy(input_ptr, input, numel * sizeof(float)); pam_->Predict(input_tensor); std::shared_ptr output = pam_->Fetch(); float *output_pointer = new float[output->numel()]; memcpy(output_pointer, output->data(), output->numel() * sizeof(float)); PaddleMobileCPUResult *cpuResult = [[PaddleMobileCPUResult alloc] init]; [cpuResult toSetOutput: output_pointer]; [cpuResult toSetOutputSize: output->numel()]; return cpuResult; } - (PaddleMobileCPUResult *)predict:(CGImageRef)image dim:(NSArray *)dim means:(NSArray *)means scale:(float)scale{ // printf(" predict one "); std::lock_guard lock(shared_mutex); if (!loaded_) { printf("PaddleMobile doesn't be loaded yet"); return nil; } if (dim.count != 4) { printf("dim must have 4 elements"); return nil; } // dim to c++ vector, get numel std::vector dim_vec; int numel = 1; for (int k = 0; k < dim.count; ++k) { int d = dim[k].intValue; numel *= d; dim_vec.push_back(d); } const int sourceRowBytes = CGImageGetBytesPerRow(image); const int image_width = CGImageGetWidth(image); const int image_height = CGImageGetHeight(image); const int image_channels = 4; CGDataProviderRef provider = CGImageGetDataProvider(image); CFDataRef cfData = CGDataProviderCopyData(provider); const UInt8 *input = CFDataGetBytePtr(cfData); // sample image float *output = (float *)malloc(numel*sizeof(float)); [self preprocess:input output:output imageWidth:image_width imageHeight:image_height imageChannels:image_channels means:means scale:scale dim:dim_vec]; float *dataPointer = nullptr; if (nullptr != output) { dataPointer = output; } else { return nil; } // input std::vector predict_input; for (int j = 0; j < numel; ++j) { predict_input.push_back(dataPointer[j]); } // predict std::vector cpp_result = pam_->Predict(predict_input, dim_vec); float *output_pointer = new float[cpp_result.size()]; memcpy(output_pointer, cpp_result.data(), cpp_result.size() * sizeof(float)); PaddleMobileCPUResult *cpuResult = [[PaddleMobileCPUResult alloc] init]; [cpuResult toSetOutput: output_pointer]; [cpuResult toSetOutputSize: cpp_result.size()]; free(output); CFRelease(cfData); cfData = NULL; return cpuResult; } - (PaddleMobileCPUResult *)predict:(CGImageRef)image dim:(NSArray *)dim { return [self predict:image dim:dim means:nil scale:1]; } - (void)clear{ pam_->Clear(); } @end