// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/npu/bridges/registry.h" #include "lite/kernels/xpu/bridges/graph.h" #include "lite/kernels/xpu/bridges/utility.h" namespace paddle { namespace lite { namespace subgraph { namespace xpu { int BatchNormConverter(void* ctx, OpLite* op, KernelBase* kernel) { CHECK(ctx != nullptr); CHECK(op != nullptr); auto graph = static_cast(ctx); auto op_info = op->op_info(); auto op_type = op_info->Type(); auto scope = op->scope(); VLOG(3) << "[XPU] Converting " + op_type + "..."; // Get input and output vars and op attributes auto x_name = op_info->Input("X").front(); auto x = scope->FindMutableTensor(x_name); auto x_dims = x->dims(); auto scale_name = op_info->Input("Scale").front(); auto scale = scope->FindMutableTensor(scale_name); auto bias_name = op_info->Input("Bias").front(); auto bias = scope->FindMutableTensor(bias_name); auto mean_name = op_info->Input("Mean").front(); auto mean = scope->FindMutableTensor(mean_name); auto variance_name = op_info->Input("Variance").front(); auto variance = scope->FindMutableTensor(variance_name); auto y_name = op_info->Output("Y").front(); auto epsilon = op_info->GetAttr("epsilon"); // X node std::shared_ptr x_node = nullptr; if (graph->Has(x_name)) { x_node = graph->Get(x_name); } else { x_node = graph->Add(x_name, *x); } // Scale, Bias, Mean, Variance node auto scale_node = graph->Add(scale_name, *scale); auto bias_node = graph->Add(bias_name, *bias); auto mean_node = graph->Add(mean_name, *mean); auto variance_node = graph->Add(variance_name, *variance); // Batch Norm node and extract the first field as the output node auto batch_norm_data = graph->builder_.CreateBatchNorm(*x_node->data(), *scale_node->data(), *bias_node->data(), *mean_node->data(), *variance_node->data(), 1, epsilon); graph->Add(y_name, graph->builder_.GetField(batch_norm_data, 0)); return SUCCESS; } } // namespace xpu } // namespace subgraph } // namespace lite } // namespace paddle REGISTER_SUBGRAPH_BRIDGE(batch_norm, kXPU, paddle::lite::subgraph::xpu::BatchNormConverter);