// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/npu/bridges/graph.h" #include "lite/kernels/npu/bridges/registry.h" #include "lite/kernels/npu/bridges/utility.h" namespace paddle { namespace lite { namespace subgraph { namespace npu { // Note: all of the input weight vars should be handled in this converter int MulConverter(void* ctx, OpLite* op, KernelBase* kernel) { CHECK(ctx != nullptr); CHECK(op != nullptr); auto graph = static_cast(ctx); auto op_info = op->op_info(); auto op_type = op_info->Type(); auto scope = op->scope(); VLOG(3) << "[NPU] Converting " + op_type + "..."; // Get input and output vars and op attributes auto x_name = op_info->Input("X").front(); auto x = scope->FindTensor(x_name); auto x_dims = x->dims(); auto y_name = op_info->Input("Y").front(); auto y = scope->FindTensor(y_name); auto y_dims = y->dims(); auto out_name = op_info->Output("Out").front(); auto out = scope->FindTensor(out_name); auto out_dims = out->dims(); if (out_dims.size() > 4) { LOG(WARNING) << "[NPU] not supported above 4-D."; return FAILED; } int x_num_col_dims = op_info->GetAttr("x_num_col_dims"); int y_num_col_dims = op_info->GetAttr("y_num_col_dims"); int m = x_dims.Slice(0, x_num_col_dims).production(); int k = x_dims.Slice(x_num_col_dims, x_dims.size()).production(); CHECK_EQ(k, y_dims.Slice(0, y_num_col_dims).production()) << "[NPU] columns of X must be equal with rows of Y"; int n = y_dims.Slice(y_num_col_dims, y_dims.size()).production(); VLOG(3) << "m:" << m << ",n:" << n << ",k:" << k; VLOG(3) << "x_name:" << x_name << ", is data: " << graph->Has(x_name); VLOG(3) << "y_name:" << y_name << ", is data: " << graph->Has(y_name); // X node which supports persistable and non-persistable tensor, and // reshape to (m, k) std::shared_ptr x_node = nullptr; if (graph->Has(x_name)) { x_node = graph->Get(x_name); if (x_dims.size() != 2) { auto reshaped_x_node = graph->Add(x_name + "/reshape"); auto reshaped_x_op = reshaped_x_node->data(); reshaped_x_op->set_input_tensor(*x_node->data()); reshaped_x_op->set_attr_shape({m, k}); reshaped_x_op->set_attr_axis(0); x_node = reshaped_x_node; } } else { x_node = graph->Add(x_name, *x, {m, k}); } // Y node which only supports persistable tensor, and reshape to // (k,n) std::shared_ptr y_node = nullptr; if (graph->Has(y_name)) { y_node = graph->Get(y_name); if (y_dims.size() != 2) { auto reshaped_y_node = graph->Add(y_name + "/reshape"); auto reshaped_y_op = reshaped_y_node->data(); reshaped_y_op->set_input_tensor(*y_node->data()); reshaped_y_op->set_attr_shape({k, n}); reshaped_y_op->set_attr_axis(0); y_node = reshaped_y_node; } } else { y_node = graph->Add(y_name, *y, {k, n}); } // Matmul node auto mul_node = graph->Add(out_name); auto mul_op = mul_node->data(); mul_op->set_input_x1(*x_node->data()); mul_op->set_input_x2(*y_node->data()); if (out_dims.size() != 2) { auto reshaped_out_node = graph->Add(out_name); auto reshaped_out_op = reshaped_out_node->data(); reshaped_out_op->set_input_tensor(*mul_node->data()); auto out_shape = out_dims.Vectorize(); reshaped_out_op->set_attr_shape( ge::AttrValue::LIST_INT(out_shape.begin(), out_shape.end())); reshaped_out_op->set_attr_axis(0); } return REBUILD_WHEN_SHAPE_CHANGED; } } // namespace npu } // namespace subgraph } // namespace lite } // namespace paddle REGISTER_SUBGRAPH_BRIDGE(mul, kNPU, paddle::lite::subgraph::npu::MulConverter);