// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/npu/bridges/graph.h" #include "lite/kernels/npu/bridges/registry.h" #include "lite/kernels/npu/bridges/utility.h" namespace paddle { namespace lite { namespace subgraph { namespace npu { int InstanceNormConverter(void* ctx, OpLite* op, KernelBase* kernel) { CHECK(ctx != nullptr); CHECK(op != nullptr); auto graph = static_cast(ctx); auto op_info = op->op_info(); auto op_type = op_info->Type(); auto scope = op->scope(); VLOG(3) << "[NPU] Converting " + op_type + "..."; // Get input and output vars and op attributes auto x_name = op_info->Input("X").front(); auto x = scope->FindMutableTensor(x_name); auto x_dims = x->dims(); CHECK_EQ(x_dims.size(), 4L); auto batch_size = x_dims[0]; auto channel_size = x_dims[1]; auto spatial_size = x_dims[2] * x_dims[3]; DDim scale_bias_dims({1, channel_size, 1, 1}); auto y_name = op_info->Output("Y").front(); float epsilon = op_info->GetAttr("epsilon"); // X node std::shared_ptr x_node = nullptr; if (graph->Has(x_name)) { x_node = graph->Get(x_name); } else { x_node = graph->Add(x_name, *x); } // Bias node std::shared_ptr bias_node = nullptr; if (HasInputArg(op_info, scope, "Bias")) { auto bias_name = op_info->Input("Bias").front(); auto bias = scope->FindMutableTensor(bias_name); auto bias_dims = bias->dims(); CHECK_EQ(channel_size, bias_dims.production()); if (spatial_size <= 1) { // Bug exists in HiAI DDK when h=1 and w=1 auto bias_data = bias->mutable_data(); Tensor y; y.Resize(x_dims); y.set_persistable(true); auto y_data = y.mutable_data(); for (int i = 0; i < batch_size; i++) { std::memcpy(y_data, bias_data, sizeof(float) * channel_size); y_data += channel_size; } graph->Add(y_name, y); return SUCCESS; } else { if (!bias->persistable()) { LOG(WARNING) << "[NPU] Only supporting persistable bias tensor."; return FAILED; } bias_node = graph->Add(bias_name, *bias, scale_bias_dims); } } else { if (spatial_size <= 1) { // Bug exists in HiAI DDK when h=1 and w=1 graph->Add(y_name, 0.0f, x_dims); return SUCCESS; } else { bias_node = graph->Add(y_name + "/bias", 0.0f, scale_bias_dims); } } // Scale node std::shared_ptr scale_node = nullptr; if (HasInputArg(op_info, scope, "Scale")) { auto scale_name = op_info->Input("Scale").front(); auto scale = scope->FindMutableTensor(scale_name); auto scale_dims = scale->dims(); CHECK_EQ(channel_size, scale_dims.production()); if (!scale->persistable()) { LOG(WARNING) << "[NPU] Only supporting persistable scale tensor."; return FAILED; } scale_node = graph->Add(scale_name, *scale, scale_bias_dims); } else { scale_node = graph->Add(y_name + "/scale", 1.0f, scale_bias_dims); } // InstanceNorm node auto instance_norm_node = graph->Add(y_name); auto instance_norm_op = instance_norm_node->data(); instance_norm_op->set_input_x(*x_node->data()); instance_norm_op->set_input_scale(*scale_node->data()); instance_norm_op->set_input_bias(*bias_node->data()); instance_norm_op->set_attr_reduction_indices(ge::AttrValue::LIST_INT({2})); instance_norm_op->set_attr_epsilon(epsilon); return SUCCESS; } } // namespace npu } // namespace subgraph } // namespace lite } // namespace paddle REGISTER_SUBGRAPH_BRIDGE(instance_norm, kNPU, paddle::lite::subgraph::npu::InstanceNormConverter);