// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/operators/conv_op.h" #include "lite/kernels/npu/bridges/graph.h" #include "lite/kernels/npu/bridges/registry.h" #include "lite/kernels/npu/bridges/utility.h" namespace paddle { namespace lite { namespace subgraph { namespace npu { int ConvConverter(void* ctx, OpLite* op, KernelBase* kernel) { CHECK(ctx != nullptr); CHECK(op != nullptr); auto graph = static_cast(ctx); auto op_info = op->op_info(); auto op_type = op_info->Type(); auto scope = op->scope(); VLOG(3) << "[NPU] Converting " << op_type << "... "; // Get input and output vars and op attributes auto input_name = op_info->Input("Input").front(); auto input = scope->FindMutableTensor(input_name); auto input_dims = input->dims(); auto filter_name = op_info->Input("Filter").front(); auto filter = scope->FindMutableTensor(filter_name); auto filter_dims = filter->dims(); auto output_name = op_info->Output("Output").front(); auto output = scope->FindMutableTensor(output_name); auto output_dims = output->dims(); auto bs = input_dims[0]; auto ic = input_dims[1]; auto oc = filter_dims[0]; CHECK_EQ(input_dims.size(), 4L); CHECK_EQ(output_dims.size(), 4L); CHECK_EQ(filter_dims.size(), 4L); CHECK_EQ(output_dims[0], bs); CHECK_EQ(output_dims[1], oc); auto strides = op_info->GetAttr>("strides"); auto paddings = op_info->GetAttr>("paddings"); auto groups = op_info->GetAttr("groups"); auto dilations = op_info->GetAttr>("dilations"); bool with_act = op_info->HasAttr("with_act") && op_info->GetAttr("with_act"); std::string act_type = with_act ? op_info->GetAttr("act_type") : ""; float leaky_relu_alpha = act_type == "leaky_relu" ? op_info->GetAttr("leaky_relu_alpha") : 0.f; CHECK_EQ(strides.size(), 2L); CHECK_EQ(dilations.size(), 2L); // Input node std::shared_ptr input_node = nullptr; if (graph->Has(input_name)) { input_node = graph->Get(input_name); } else { input_node = graph->Add(input_name, *input); } if (paddings.size() == 2L) { for (size_t i = 0; i < strides.size(); ++i) { int copy_pad = *(paddings.begin() + 2 * i); paddings.insert(paddings.begin() + 2 * i + 1, copy_pad); } } CHECK_EQ(paddings.size(), 4L) << "[NPU] Paddings size should be the same or twice as the input size."; std::string padding_algorithm(""); if (op_info->HasAttr("padding_algorithm")) { padding_algorithm = op_info->GetAttr("padding_algorithm"); } operators::UpdatePaddingAndDilation(&paddings, &dilations, strides, padding_algorithm, input_dims, filter_dims); // Check depthwise mode, and decide whether use ConvolutionDepthwise Op bool use_depthwise_conv = false; // Whether use ge::op::ConvolutionDepthwise ? bool is_depthwise_mode = ic == groups && oc == groups; if (is_depthwise_mode && !((groups == 1 || groups >= 5) && dilations[0] == 1 && dilations[1] == 1)) { use_depthwise_conv = true; LOG(WARNING) << "[NPU] For depthwise mode, dilation = 1 and groups >= 5 " "(or groups = 1) is only supported in Convolution Op, so " "force to use ConvolutionDepthwise Op, but may lead poor " "performance."; } // Filter node auto filter_node = graph->Add(filter_name, *filter); // Add bias node if exists bias // Supports the bias nodes with the following dimensions // 0: {oc} // 1: {1, oc, oh, ow} // 2: {n, oc, oh, ow} std::shared_ptr bias_node = nullptr; bool is_channel_bias = false; if (HasInputArg(op_info, scope, "Bias")) { auto bias_name = op_info->Input("Bias").front(); if (graph->Has(bias_name)) { bias_node = graph->Get(bias_name); } else { auto bias = scope->FindMutableTensor(bias_name); auto bias_dims = bias->dims(); auto bias_data_size = bias_dims.production(); auto output_data_size = output_dims.production(); std::vector bias_shape; if (bias_data_size == oc) { // 0: {oc} bias_shape = {1, oc, 1, 1}; is_channel_bias = true; } else if (bias_data_size == output_data_size / bs) { // 1: {1, oc, oh, ow} bias_shape = {1, output_dims[1], output_dims[2], output_dims[3]}; } else if (bias_data_size == output_data_size) { // 2: {n, oc, oh, ow} bias_shape = output_dims.Vectorize(); } else { LOG(WARNING) << "[NPU] Bias dimension " << bias_dims << " isn't supported in conv2d Op when output dimension is " << output_dims; return FAILED; } bias_node = graph->Add(bias_name, *bias, bias_shape); } } // Conv node std::shared_ptr conv_node = nullptr; if (use_depthwise_conv && is_depthwise_mode) { conv_node = graph->Add(output_name); auto conv_op = conv_node->data(); conv_op->set_input_x(*input_node->data()); conv_op->set_input_filter(*filter_node->data()); conv_op->set_attr_mode(1); conv_op->set_attr_algo(0); conv_op->set_attr_format(0); // NCHW conv_op->set_attr_pad_mode(5); // VALID conv_op->set_attr_group(groups); conv_op->set_attr_pad(ge::AttrValue::LIST_INT( {paddings[0], paddings[1], paddings[2], paddings[3]})); conv_op->set_attr_dilation( ge::AttrValue::LIST_INT({dilations[0], dilations[1]})); conv_op->set_attr_stride(ge::AttrValue::LIST_INT({strides[0], strides[1]})); conv_op->set_attr_kernel( ge::AttrValue::LIST_INT({filter_dims[2], filter_dims[3]})); // ConvolutionDepthwise Op doesn't support bias, so append Add node to // support bias if (bias_node != nullptr) { auto add_node = graph->Add(output_name); auto add_op = add_node->data(); add_op->set_input_x1(*conv_node->data()); add_op->set_input_x2(*bias_node->data()); conv_node = add_node; } } else { conv_node = graph->Add(output_name); auto conv_op = conv_node->data(); conv_op->set_input_x(*input_node->data()); conv_op->set_input_w(*filter_node->data()); conv_op->set_attr_mode(1); // when padding_algorithm=="SAME", NPU is different from lite if (padding_algorithm == "VALID") { conv_op->set_attr_pad_mode(5); } else { conv_op->set_attr_pad_mode(0); } conv_op->set_attr_group(groups); conv_op->set_attr_pad(ge::AttrValue::LIST_INT( {paddings[0], paddings[1], paddings[2], paddings[3]})); conv_op->set_attr_dilation( ge::AttrValue::LIST_INT({dilations[0], dilations[1]})); conv_op->set_attr_stride(ge::AttrValue::LIST_INT({strides[0], strides[1]})); conv_op->set_attr_kernel( ge::AttrValue::LIST_INT({filter_dims[2], filter_dims[3]})); // Convolution Op only support bias with dimension {1, oc, 1, 1}, // so append Add node if dimension is {1, oc, oh, ow} or (n, oc, oh, ow) if (bias_node != nullptr) { if (is_channel_bias) { conv_op->set_input_b(*bias_node->data()); } else { auto add_node = graph->Add(output_name); auto add_op = add_node->data(); add_op->set_input_x1(*conv_node->data()); add_op->set_input_x2(*bias_node->data()); conv_node = add_node; } } } CHECK(conv_node); if (!act_type.empty()) { auto act_node = graph->Add(output_name); auto act_op = act_node->data(); act_op->set_input_x(*conv_node->data()); act_op->set_attr_mode(CvtActMode(act_type)); if (act_type == "leaky_relu") { act_op->set_attr_negative_slope(leaky_relu_alpha); } } return REBUILD_WHEN_SHAPE_CHANGED; } } // namespace npu } // namespace subgraph } // namespace lite } // namespace paddle REGISTER_SUBGRAPH_BRIDGE(conv2d, kNPU, paddle::lite::subgraph::npu::ConvConverter); REGISTER_SUBGRAPH_BRIDGE(depthwise_conv2d, kNPU, paddle::lite::subgraph::npu::ConvConverter);