// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "lite/api/cxx_api.h" #include "lite/api/paddle_use_kernels.h" #include "lite/api/paddle_use_ops.h" #include "lite/api/paddle_use_passes.h" #include "lite/api/test_helper.h" #include "lite/core/op_registry.h" namespace paddle { namespace lite { void TestModel(const std::vector& valid_places, const Place& preferred_place, bool use_npu = false) { DeviceInfo::Init(); DeviceInfo::Global().SetRunMode(LITE_POWER_HIGH, FLAGS_threads); lite::Predictor predictor; predictor.Build(FLAGS_model_dir, preferred_place, valid_places); auto* input_tensor = predictor.GetInput(0); input_tensor->Resize(DDim(std::vector({1, 1, 48, 512}))); auto* data = input_tensor->mutable_data(); auto item_size = input_tensor->dims().production(); for (int i = 0; i < item_size; i++) { data[i] = 1; } auto* init_scores = predictor.GetInput(2); init_scores->Resize(DDim(std::vector({1, 1}))); auto* data_scores = init_scores->mutable_data(); auto scores_size = input_tensor->dims().production(); for (int i = 0; i < scores_size; i++) { data_scores[i] = 0; } auto lod_scores = init_scores->mutable_lod(); std::vector> lod_s{{0, 1}, {0, 1}}; *lod_scores = lod_s; auto* init_ids = predictor.GetInput(1); init_ids->Resize(DDim(std::vector({1, 1}))); auto* data_ids = init_ids->mutable_data(); auto ids_size = init_ids->dims().production(); for (int i = 0; i < ids_size; i++) { data_ids[i] = 0; } auto lod_ids = init_ids->mutable_lod(); std::vector> lod_i{{0, 1}, {0, 1}}; *lod_ids = lod_i; for (int i = 0; i < FLAGS_warmup; ++i) { predictor.Run(); } auto start = GetCurrentUS(); for (int i = 0; i < FLAGS_repeats; ++i) { predictor.Run(); } LOG(INFO) << "================== Speed Report ==================="; LOG(INFO) << "Model: " << FLAGS_model_dir << ", threads num " << FLAGS_threads << ", warmup: " << FLAGS_warmup << ", repeats: " << FLAGS_repeats << ", spend " << (GetCurrentUS() - start) / FLAGS_repeats / 1000.0 << " ms in average."; // std::vector> results; // // i = 1 // results.emplace_back(std::vector( // {0.00019130898, 9.467885e-05, 0.00015971427, 0.0003650665, // 0.00026431272, 0.00060884043, 0.0002107942, 0.0015819625, // 0.0010323516, 0.00010079765, 0.00011006987, 0.0017364529, // 0.0048292773, 0.0013995157, 0.0018453331, 0.0002428986, // 0.00020211363, 0.00013668182, 0.0005855956, 0.00025901722})); // auto* out = predictor.GetOutput(0); // ASSERT_EQ(out->dims().size(), 2); // ASSERT_EQ(out->dims()[0], 1); // ASSERT_EQ(out->dims()[1], 1000); // // int step = 50; // for (int i = 0; i < results.size(); ++i) { // for (int j = 0; j < results[i].size(); ++j) { // EXPECT_NEAR(out->data()[j * step + (out->dims()[1] * i)], // results[i][j], // 1e-6); // } // } } TEST(OcrAttention, test_arm) { std::vector valid_places({ Place{TARGET(kHost), PRECISION(kFloat)}, Place{TARGET(kARM), PRECISION(kFloat)}, }); TestModel(valid_places, Place({TARGET(kARM), PRECISION(kFloat)})); } } // namespace lite } // namespace paddle