// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // Part of the following code in this file refs to // https://github.com/msracver/Deformable-ConvNets/blob/master/faster_rcnn/operator_cxx/deformable_convolution.cu // // Copyright (c) 2017 Microsoft // Licensed under The Apache-2.0 License [see LICENSE for details] // \file deformable_psroi_pooling.cu // \brief // \author Yi Li, Guodong Zhang, Jifeng Dai /** * @note: all code in this file are copied from paddle fluid * paddle commit id: f4c750d721a1226738bea382f6c0cf725cca8481 * * check "paddle/fluid/operators/deformable_conv_op.h" * and "paddle/fluid/operators/deformable_conv_func.h" * if necessary */ #pragma once #include #include #include namespace paddle { namespace lite { namespace kernels { namespace host { template HOSTDEVICE T DmcnGetGradientWeight(T argmax_h, T argmax_w, const int h, const int w, const int height, const int width) { if (argmax_h <= -1 || argmax_h >= height || argmax_w <= -1 || argmax_w >= width) { return 0; } int argmax_h_low = floor(argmax_h); int argmax_w_low = floor(argmax_w); int argmax_h_high = argmax_h_low + 1; int argmax_w_high = argmax_w_low + 1; T weight = 0; weight = (h == argmax_h_low && w == argmax_w_low) ? (h + 1 - argmax_h) * (w + 1 - argmax_w) : weight; weight = (h == argmax_h_low && w == argmax_w_high) ? (h + 1 - argmax_h) * (argmax_w + 1 - w) : weight; weight = (h == argmax_h_high && w == argmax_w_low) ? (argmax_h + 1 - h) * (w + 1 - argmax_w) : weight; weight = (h == argmax_h_high && w == argmax_w_high) ? (argmax_h + 1 - h) * (argmax_w + 1 - w) : weight; return weight; } template HOSTDEVICE T DmcnGetCoordinateWeight(T argmax_h, T argmax_w, const int height, const int width, const T* im_data, const int data_width, const int bp_dir) { if (argmax_h <= -1 || argmax_h >= height || argmax_w <= -1 || argmax_w >= width) { return 0; } int argmax_h_low = floor(argmax_h); int argmax_w_low = floor(argmax_w); int argmax_h_high = argmax_h_low + 1; int argmax_w_high = argmax_w_low + 1; T weight = 0; if (bp_dir == 0) { weight += (argmax_h_low >= 0 && argmax_w_low >= 0) ? -1 * (argmax_w_low + 1 - argmax_w) * im_data[argmax_h_low * data_width + argmax_w_low] : 0; weight += (argmax_h_low >= 0 && argmax_w_high <= width - 1) ? -1 * (argmax_w - argmax_w_low) * im_data[argmax_h_low * data_width + argmax_w_high] : 0; weight += (argmax_h_high <= height - 1 && argmax_w_low >= 0) ? (argmax_w_low + 1 - argmax_w) * im_data[argmax_h_high * data_width + argmax_w_low] : 0; weight += (argmax_h_high <= height - 1 && argmax_w_high <= width - 1) ? (argmax_w - argmax_w_low) * im_data[argmax_h_high * data_width + argmax_w_high] : 0; } else if (bp_dir == 1) { weight += (argmax_h_low >= 0 && argmax_w_low >= 0) ? -1 * (argmax_h_low + 1 - argmax_h) * im_data[argmax_h_low * data_width + argmax_w_low] : 0; weight += (argmax_h_low >= 0 && argmax_w_high <= width - 1) ? (argmax_h_low + 1 - argmax_h) * im_data[argmax_h_low * data_width + argmax_w_high] : 0; weight += (argmax_h_high <= height - 1 && argmax_w_low >= 0) ? -1 * (argmax_h - argmax_h_low) * im_data[argmax_h_high * data_width + argmax_w_low] : 0; weight += (argmax_h_high <= height - 1 && argmax_w_high <= width - 1) ? (argmax_h - argmax_h_low) * im_data[argmax_h_high * data_width + argmax_w_high] : 0; } return weight; } template HOSTDEVICE T DmcnIm2colBilinear(const T* bottom_data, const int data_width, const int height, const int width, T h, T w) { int h_low = floor(h); int w_low = floor(w); int h_high = h_low + 1; int w_high = w_low + 1; T lh = h - h_low; T lw = w - w_low; T hh = 1 - lh; T hw = 1 - lw; T v1 = (h_low >= 0 && w_low >= 0) ? bottom_data[h_low * data_width + w_low] : 0; T v2 = (h_low >= 0 && w_high <= width - 1) ? bottom_data[h_low * data_width + w_high] : 0; T v3 = (h_high <= height - 1 && w_low >= 0) ? bottom_data[h_high * data_width + w_low] : 0; T v4 = (h_high <= height - 1 && w_high <= width - 1) ? bottom_data[h_high * data_width + w_high] : 0; T w1 = hh * hw; T w2 = hh * lw; T w3 = lh * hw; T w4 = lh * lw; return w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4; } template void ModulatedDeformableCol2imCPUKernel(const int num_kernels, const T* data_col, const T* data_offset, const T* data_mask, const int channels, const int height, const int width, const int kernel_h, const int kernel_w, const int pad_h, const int pad_w, const int stride_h, const int stride_w, const int dilation_h, const int dilation_w, const int channel_per_deformable_group, const int batch_size, const int deformable_group, const int height_col, const int width_col, T* grad_im) { for (int thread = 0; thread < num_kernels; thread++) { const int j = (thread / width_col / height_col / batch_size) % kernel_w; const int i = (thread / width_col / height_col / batch_size / kernel_w) % kernel_h; const int c = thread / width_col / height_col / batch_size / kernel_w / kernel_h; const int deformable_group_index = c / channel_per_deformable_group; int w_out = thread % width_col; int h_out = (thread / width_col) % height_col; int b = (thread / width_col / height_col) % batch_size; int w_in = w_out * stride_w - pad_w; int h_in = h_out * stride_h - pad_h; const T* data_offset_ptr = data_offset + (b * deformable_group + deformable_group_index) * 2 * kernel_h * kernel_w * height_col * width_col; const T* data_mask_ptr = data_mask + (b * deformable_group + deformable_group_index) * kernel_h * kernel_w * height_col * width_col; const int data_offset_h_ptr = ((2 * (i * kernel_w + j)) * height_col + h_out) * width_col + w_out; const int data_offset_w_ptr = ((2 * (i * kernel_w + j) + 1) * height_col + h_out) * width_col + w_out; const int data_mask_hw_ptr = ((i * kernel_w + j) * height_col + h_out) * width_col + w_out; const T offset_h = data_offset_ptr[data_offset_h_ptr]; const T offset_w = data_offset_ptr[data_offset_w_ptr]; const T mask = data_mask_ptr[data_mask_hw_ptr]; const T cur_inv_h_data = h_in + i * dilation_h + offset_h; const T cur_inv_w_data = w_in + j * dilation_w + offset_w; const T cur_top_grad = data_col[thread] * mask; const int cur_h = static_cast(cur_inv_h_data); const int cur_w = static_cast(cur_inv_w_data); for (int dy = -2; dy <= 2; dy++) { for (int dx = -2; dx <= 2; dx++) { if (cur_h + dy >= 0 && cur_h + dy < height && cur_w + dx >= 0 && cur_w + dx < width && abs(cur_inv_h_data - (cur_h + dy)) < 1 && abs(cur_inv_w_data - (cur_w + dx)) < 1) { int cur_bottom_grad_pos = ((b * channels + c) * height + cur_h + dy) * width + cur_w + dx; T weight = DmcnGetGradientWeight(cur_inv_h_data, cur_inv_w_data, cur_h + dy, cur_w + dx, height, width); *(grad_im + cur_bottom_grad_pos) = *(grad_im + cur_bottom_grad_pos) + weight * cur_top_grad; } } } } } template static inline void ModulatedDeformableCol2imCPU( const T* data_col, const T* data_offset, const T* data_mask, const std::vector im_shape, const std::vector col_shape, const std::vector kernel_shape, const std::vector pad, const std::vector stride, const std::vector dilation, const int deformable_group, T* grad_im) { int channel_per_deformable_group = im_shape[0] / deformable_group; int num_kernels = col_shape[0] * col_shape[1] * col_shape[2] * col_shape[3]; ModulatedDeformableCol2imCPUKernel(num_kernels, data_col, data_offset, data_mask, im_shape[0], im_shape[1], im_shape[2], kernel_shape[2], kernel_shape[3], pad[0], pad[1], stride[0], stride[1], dilation[0], dilation[1], channel_per_deformable_group, col_shape[1], deformable_group, col_shape[2], col_shape[3], grad_im); } template void ModulatedDeformableCol2imCoordCPUKernel( const int num_kernels, const T* data_col, const T* data_im, const T* data_offset, const T* data_mask, const int channels, const int height, const int width, const int kernel_h, const int kernel_w, const int pad_h, const int pad_w, const int stride_h, const int stride_w, const int dilation_h, const int dilation_w, const int channel_per_deformable_group, const int batch_size, const int offset_channels, const int deformable_group, const int height_col, const int width_col, T* grad_offset, T* grad_mask) { for (int i = 0; i < num_kernels; i++) { T val = 0, mval = 0; const int w = i % width_col; const int h = (i / width_col) % height_col; const int c = (i / width_col / height_col) % offset_channels; const int b = (i / width_col / height_col) / offset_channels; const int deformable_group_index = c / (2 * kernel_h * kernel_w); const int col_step = kernel_h * kernel_w; int cnt = 0; const T* data_col_ptr = data_col + deformable_group_index * channel_per_deformable_group * batch_size * width_col * height_col; const T* data_im_ptr = data_im + (b * deformable_group + deformable_group_index) * channel_per_deformable_group / kernel_h / kernel_w * height * width; const T* data_offset_ptr = data_offset + (b * deformable_group + deformable_group_index) * 2 * kernel_h * kernel_w * height_col * width_col; const T* data_mask_ptr = data_mask + (b * deformable_group + deformable_group_index) * kernel_h * kernel_w * height_col * width_col; const int offset_c = c - deformable_group_index * 2 * kernel_h * kernel_w; for (int col_c = offset_c / 2; col_c < channel_per_deformable_group; col_c += col_step) { const int col_pos = (((col_c * batch_size + b) * height_col) + h) * width_col + w; const int bp_dir = offset_c % 2; int j = (col_pos / width_col / height_col / batch_size) % kernel_w; int i = (col_pos / width_col / height_col / batch_size / kernel_w) % kernel_h; int w_out = col_pos % width_col; int h_out = (col_pos / width_col) % height_col; int w_in = w_out * stride_w - pad_w; int h_in = h_out * stride_h - pad_h; const int data_offset_h_ptr = (((2 * (i * kernel_w + j)) * height_col + h_out) * width_col + w_out); const int data_offset_w_ptr = (((2 * (i * kernel_w + j) + 1) * height_col + h_out) * width_col + w_out); const int data_mask_hw_ptr = (((i * kernel_w + j) * height_col + h_out) * width_col + w_out); const T offset_h = data_offset_ptr[data_offset_h_ptr]; const T offset_w = data_offset_ptr[data_offset_w_ptr]; const T mask = data_mask_ptr[data_mask_hw_ptr]; T inv_h = h_in + i * dilation_h + offset_h; T inv_w = w_in + j * dilation_w + offset_w; if (inv_h <= -1 || inv_w <= -1 || inv_h >= height || inv_w >= width) { inv_h = inv_w = -2; } else { mval += data_col_ptr[col_pos] * DmcnIm2colBilinear(data_im_ptr + cnt * height * width, width, height, width, inv_h, inv_w); } const T weight = DmcnGetCoordinateWeight(inv_h, inv_w, height, width, data_im_ptr + cnt * height * width, width, bp_dir); val += weight * data_col_ptr[col_pos] * mask; cnt += 1; } grad_offset[i] = val; if (offset_c % 2 == 0) grad_mask[(((b * deformable_group + deformable_group_index) * kernel_h * kernel_w + offset_c / 2) * height_col + h) * width_col + w] = mval; } } template static inline void ModulatedDeformableCol2imCoordCPU( const T* data_col, const T* data_im, const T* data_offset, const T* data_mask, const std::vector im_shape, const std::vector col_shape, const std::vector kernel_shape, const std::vector paddings, const std::vector strides, const std::vector dilations, const int deformable_groups, T* grad_offset, T* grad_mask) { int num_kernels = 2 * kernel_shape[2] * kernel_shape[3] * col_shape[1] * col_shape[2] * col_shape[3] * deformable_groups; int channel_per_deformable_group = col_shape[0] / deformable_groups; ModulatedDeformableCol2imCoordCPUKernel( num_kernels, data_col, data_im, data_offset, data_mask, im_shape[0], im_shape[1], im_shape[2], kernel_shape[2], kernel_shape[3], paddings[0], paddings[1], strides[0], strides[1], dilations[0], dilations[1], channel_per_deformable_group, col_shape[1], 2 * kernel_shape[2] * kernel_shape[3] * deformable_groups, deformable_groups, col_shape[2], col_shape[3], grad_offset, grad_mask); } template void ModulatedDeformableIm2colCPUKernel(const int num_kernels, const T* data_im, const T* data_offset, const T* data_mask, const int height, const int width, const int kernel_h, const int kernel_w, const int pad_h, const int pad_w, const int stride_h, const int stride_w, const int dilation_h, const int dilation_w, const int channel_per_deformable_group, const int batch_size, const int num_channels, const int deformable_group, const int height_col, const int width_col, T* data_col) { for (int i = 0; i < num_kernels; i++) { const int w_col = i % width_col; const int h_col = (i / width_col) % height_col; const int b_col = (i / width_col) / height_col % batch_size; const int c_im = (i / width_col / height_col) / batch_size; const int c_col = c_im * kernel_h * kernel_w; const int deformable_group_index = c_im / channel_per_deformable_group; const int h_in = h_col * stride_h - pad_h; const int w_in = w_col * stride_w - pad_w; T* data_col_ptr = data_col + ((c_col * batch_size + b_col) * height_col + h_col) * width_col + w_col; const T* data_im_ptr = data_im + (b_col * num_channels + c_im) * height * width; const T* data_offset_ptr = data_offset + (b_col * deformable_group + deformable_group_index) * 2 * kernel_h * kernel_w * height_col * width_col; const T* data_mask_ptr = data_mask + (b_col * deformable_group + deformable_group_index) * kernel_h * kernel_w * height_col * width_col; for (int i = 0; i < kernel_h; ++i) { for (int j = 0; j < kernel_w; ++j) { const int data_offset_h_ptr = ((2 * (i * kernel_w + j)) * height_col + h_col) * width_col + w_col; const int data_offset_w_ptr = ((2 * (i * kernel_w + j) + 1) * height_col + h_col) * width_col + w_col; const int data_mask_hw_ptr = ((i * kernel_w + j) * height_col + h_col) * width_col + w_col; const T offset_h = data_offset_ptr[data_offset_h_ptr]; const T offset_w = data_offset_ptr[data_offset_w_ptr]; const T mask = data_mask_ptr[data_mask_hw_ptr]; T val = static_cast(0); const T h_im = h_in + i * dilation_h + offset_h; const T w_im = w_in + j * dilation_w + offset_w; if (h_im > -1 && w_im > -1 && h_im < height && w_im < width) { val = DmcnIm2colBilinear(data_im_ptr, width, height, width, h_im, w_im); } *data_col_ptr = val * mask; data_col_ptr += batch_size * height_col * width_col; } } } } template static inline void ModulatedDeformableIm2colCPU( const T* data_im, const T* data_offset, const T* data_mask, const std::vector im_shape, const std::vector col_shape, const std::vector filter_shape, const std::vector paddings, const std::vector strides, const std::vector dilations, const int deformable_groups, T* data_col) { int channel_per_deformable_group = im_shape[0] / deformable_groups; int num_kernels = im_shape[0] * col_shape[1] * col_shape[2] * col_shape[3]; // get outputs of im2col with offset by bilinear interpolation ModulatedDeformableIm2colCPUKernel(num_kernels, data_im, data_offset, data_mask, im_shape[1], im_shape[2], filter_shape[2], filter_shape[3], paddings[0], paddings[1], strides[0], strides[1], dilations[0], dilations[1], channel_per_deformable_group, col_shape[1], im_shape[0], deformable_groups, col_shape[2], col_shape[3], data_col); } template void FilterGradAddupCPUKernel(const int nthreads, const int n, const int height, const int width, const T* dweight_3d, T* filter_grad) { for (int i = 0; i < nthreads; i++) { filter_grad[i] = filter_grad[i] + dweight_3d[i]; } } } // namespace host } // namespace kernels } // namespace lite } // namespace paddle