// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "lite/api/cxx_api.h" #include "lite/api/paddle_use_kernels.h" #include "lite/api/paddle_use_ops.h" #include "lite/api/paddle_use_passes.h" #include "lite/api/test_helper.h" #include "lite/core/op_registry.h" namespace paddle { namespace lite { #ifdef LITE_WITH_ARM TEST(unet, test) { DeviceInfo::Init(); DeviceInfo::Global().SetRunMode(LITE_POWER_HIGH, FLAGS_threads); lite::Predictor predictor; std::vector valid_places({Place{TARGET(kHost), PRECISION(kFloat)}, Place{TARGET(kARM), PRECISION(kFloat)}}); predictor.Build( FLAGS_model_dir, Place{TARGET(kARM), PRECISION(kFloat)}, valid_places); auto* input_tensor = predictor.GetInput(0); input_tensor->Resize(DDim(std::vector({1, 3, 512, 512}))); auto* data = input_tensor->mutable_data(); auto item_size = input_tensor->dims().production(); for (int i = 0; i < item_size; i++) { data[i] = 1; } for (int i = 0; i < FLAGS_warmup; ++i) { predictor.Run(); } auto start = GetCurrentUS(); for (int i = 0; i < FLAGS_repeats; ++i) { predictor.Run(); } LOG(INFO) << "================== Speed Report ==================="; LOG(INFO) << "Model: " << FLAGS_model_dir << ", threads num " << FLAGS_threads << ", warmup: " << FLAGS_warmup << ", repeats: " << FLAGS_repeats << ", spend " << (GetCurrentUS() - start) / FLAGS_repeats / 1000.0 << " ms in average."; // std::vector results({0.00078033, 0.00083865, 0.00060029, 0.00057083, // 0.00070094, 0.00080584, 0.00044525, 0.00074907, // 0.00059774, 0.00063654}); // std::vector> results; // i = 1 results.emplace_back(std::vector( {0.9134332, 0.9652493, 0.959906, 0.96601194, 0.9704161, 0.973321, 0.9763035, 0.9788776, 0.98090196, 0.9823532, 0.9830632, 0.98336476, 0.9837605, 0.98430413, 0.9848935, 0.9854547, 0.9858877, 0.9862335, 0.9865361, 0.9867324, 0.98686767, 0.9870094, 0.98710895, 0.98710257, 0.98703253, 0.98695105, 0.98681927, 0.98661137, 0.98637575, 0.98613656, 0.9858899, 0.98564225, 0.9853931, 0.9851323, 0.98487836, 0.9846578, 0.9844529, 0.9842441, 0.98405427, 0.9839205, 0.98382735, 0.98373055, 0.9836299, 0.9835474, 0.9834818, 0.9834427, 0.98343164, 0.9834163, 0.9833809, 0.9833255, 0.9832343, 0.9831207, 0.98302484, 0.9829579, 0.9829039, 0.98283756, 0.9827444, 0.98264474, 0.9825466, 0.98243505, 0.982312, 0.98218083, 0.98203814, 0.981895, 0.9817609, 0.9816264, 0.9814932, 0.9813706, 0.98124915, 0.9811211, 0.98099536, 0.9808748, 0.98075336, 0.9806301, 0.98050594, 0.98038554, 0.980272, 0.9801562, 0.9800356, 0.9799207, 0.9798147, 0.97971845, 0.97963905, 0.9795745, 0.9795107, 0.97943753, 0.9793595, 0.97928876, 0.97922987, 0.9791764, 0.97912955, 0.9790941, 0.9790663, 0.9790414, 0.9790204, 0.9790055, 0.97899526, 0.9789867, 0.9789797, 0.9789748})); auto* out = predictor.GetOutput(0); ASSERT_EQ(out->dims().size(), 4); ASSERT_EQ(out->dims()[0], 1); ASSERT_EQ(out->dims()[1], 21); int step = 1; for (int i = 0; i < results.size(); ++i) { for (int j = 0; j < results[i].size(); ++j) { EXPECT_NEAR(out->data()[j * step + (out->dims()[1] * i)], results[i][j], 1e-6); } } } #endif } // namespace lite } // namespace paddle