// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/x86/squeeze_compute.h" #include #include #include #include #include "lite/core/op_registry.h" namespace paddle { namespace lite { namespace kernels { namespace x86 { // squeeze TEST(squeeze_x86, retrive_op) { auto squeeze = KernelRegistry::Global().Create( "squeeze"); ASSERT_FALSE(squeeze.empty()); ASSERT_TRUE(squeeze.front()); } TEST(squeeze_x86, init) { lite::kernels::x86::SqueezeCompute squeeze; ASSERT_EQ(squeeze.precision(), PRECISION(kFloat)); ASSERT_EQ(squeeze.target(), TARGET(kX86)); } TEST(squeeze_x86, run_test) { lite::Tensor x; lite::Tensor out; std::vector x_shape({1, 3, 1, 5}); x.Resize(lite::DDim(x_shape)); std::vector out_shape({3, 5}); out.Resize(lite::DDim(out_shape)); auto x_data = x.mutable_data(); auto out_data = out.mutable_data(); for (int64_t i = 0; i < x.dims().production(); ++i) { x_data[i] = static_cast(i); } // SqueezeCompute squeeze; SqueezeCompute squeeze; operators::SqueezeParam param; param.X = &x; param.Out = &out; std::vector> ref_res({{3, 5}, {3, 5}}); std::vector> axes({{0, -2}, {}}); std::unique_ptr ctx(new KernelContext); ctx->As(); for (int i = 0; i < 2; ++i) { param.axes = axes[i]; squeeze.SetContext(std::move(ctx)); squeeze.SetParam(param); squeeze.Run(); for (int j = 0; j < out.dims().production(); ++j) { EXPECT_NEAR(out_data[j], x_data[j], 1e-5); } } } // squeeze2 TEST(squeeze2_x86, retrive_op) { auto squeeze2 = KernelRegistry::Global().Create( "squeeze2"); ASSERT_FALSE(squeeze2.empty()); ASSERT_TRUE(squeeze2.front()); } TEST(squeeze2_x86, init) { lite::kernels::x86::Squeeze2Compute squeeze2; ASSERT_EQ(squeeze2.precision(), PRECISION(kFloat)); ASSERT_EQ(squeeze2.target(), TARGET(kX86)); } TEST(squeeze2_x86, run_test) { lite::Tensor x; lite::Tensor xshape; lite::Tensor out; std::vector x_shape({1, 3, 1, 5}); x.Resize(lite::DDim(x_shape)); std::vector out_shape({3, 5}); out.Resize(lite::DDim(out_shape)); std::vector xshape_shape({1, 3, 1, 5}); xshape.Resize(lite::DDim(xshape_shape)); auto x_data = x.mutable_data(); auto out_data = out.mutable_data(); auto xshape_data = xshape.mutable_data(); for (int64_t i = 0; i < x.dims().production(); ++i) { x_data[i] = static_cast(i); xshape_data[i] = static_cast(i); } // Squeeze2Compute squeeze2; Squeeze2Compute squeeze2; operators::SqueezeParam param; param.X = &x; param.Out = &out; param.XShape = &xshape; std::vector> ref_res({{3, 5}, {3, 5}}); std::vector> axes({{0, -2}, {}}); std::unique_ptr ctx(new KernelContext); ctx->As(); for (int i = 0; i < 2; ++i) { param.axes = axes[i]; squeeze2.SetContext(std::move(ctx)); squeeze2.SetParam(param); squeeze2.Run(); for (int j = 0; j < out.dims().production(); ++j) { EXPECT_NEAR(out_data[j], x_data[j], 1e-5); } } } } // namespace x86 } // namespace kernels } // namespace lite } // namespace paddle USE_LITE_KERNEL(squeeze, kX86, kFloat, kNCHW, def); USE_LITE_KERNEL(squeeze2, kX86, kFloat, kNCHW, def);