// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/model_parser/model_parser.h" #include #include #include #include #include "lite/core/scope.h" #include "lite/core/tensor.h" #include "lite/core/variable.h" #include "lite/model_parser/desc_apis.h" #include "lite/model_parser/naive_buffer/combined_params_desc.h" #include "lite/model_parser/naive_buffer/param_desc.h" #include "lite/model_parser/naive_buffer/program_desc.h" #include "lite/model_parser/naive_buffer/var_desc.h" #ifndef LITE_ON_TINY_PUBLISH #include "lite/model_parser/pb/program_desc.h" #include "lite/model_parser/pb/var_desc.h" #endif #include "lite/utils/io.h" #ifdef LITE_WITH_NPU #include "lite/backends/npu/npu_helper.h" #endif namespace paddle { namespace lite { #ifndef LITE_ON_TINY_PUBLISH int SizeOfType(framework::proto::VarType::Type type) { using Type = framework::proto::VarType::Type; switch (static_cast(type)) { #define DO(desc, type) \ case Type::VarType_Type_##desc: \ return sizeof(type); DO(BOOL, bool); DO(FP16, float); DO(FP32, float); DO(INT8, int8_t); DO(INT32, int); DO(INT64, int64_t); #undef DO default: LOG(FATAL) << "unknown data type " << type; } return -1; } void TensorFromStream(std::istream &is, lite::Tensor *tensor) { using Type = framework::proto::VarType::Type; uint32_t version; is.read(reinterpret_cast(&version), sizeof(version)); CHECK_EQ(version, 0U) << "Only version 0 is supported"; // read tensor desc framework::proto::VarType::TensorDesc desc; { // int32_t size // proto buffer int32_t size; is.read(reinterpret_cast(&size), sizeof(size)); std::unique_ptr buf(new char[size]); is.read(reinterpret_cast(buf.get()), size); CHECK(desc.ParseFromArray(buf.get(), size)) << "Cannot parse tensor desc"; } // read tensor std::vector dims_vec; std::copy( desc.dims().begin(), desc.dims().end(), std::back_inserter(dims_vec)); lite::DDim dims(dims_vec); tensor->Resize(dims); void *buf; size_t size = tensor->dims().production() * SizeOfType(desc.data_type()); // alllocate memory switch (static_cast(desc.data_type())) { #define SET_TENSOR(desc, type, precision) \ case Type::VarType_Type_##desc: \ buf = tensor->mutable_data(); \ tensor->set_precision(precision); \ break // SET_TENSOR(BOOL, bool, PRECISION(kBool)); SET_TENSOR(FP32, float, PRECISION(kFloat)); SET_TENSOR(INT8, int8_t, PRECISION(kInt8)); SET_TENSOR(INT16, int16_t, PRECISION(kInt16)); SET_TENSOR(INT32, int32_t, PRECISION(kInt32)); SET_TENSOR(INT64, int64_t, PRECISION(kInt64)); #undef SET_TENSOR default: LOG(FATAL) << "unknown type " << desc.data_type(); } tensor->set_persistable(true); is.read(static_cast(buf), size); } void LoadLoDTensor(std::istream &is, Variable *var) { auto *tensor = var->GetMutable(); uint32_t version{}; is.read(reinterpret_cast(&version), sizeof(version)); VLOG(3) << "model version " << version; // Load LoD information uint64_t lod_level{}; is.read(reinterpret_cast(&lod_level), sizeof(lod_level)); auto &lod = *tensor->mutable_lod(); lod.resize(lod_level); for (uint64_t i = 0; i < lod_level; ++i) { uint64_t size; is.read(reinterpret_cast(&size), sizeof(size)); std::vector tmp(size / sizeof(uint64_t)); is.read(reinterpret_cast(tmp.data()), static_cast(size)); lod[i] = tmp; } TensorFromStream(is, tensor); } void ReadBinaryFile(const std::string &filename, std::string *contents) { std::ifstream fin(filename, std::ios::in | std::ios::binary); CHECK(fin.is_open()) << "Cannot open file: " << filename; fin.seekg(0, std::ios::end); auto size = fin.tellg(); contents->clear(); contents->resize(size); fin.seekg(0, std::ios::beg); fin.read(&(contents->at(0)), contents->size()); fin.close(); } std::unique_ptr LoadProgram( const std::string &path, bool program_from_memory) { std::unique_ptr main_program( new framework::proto::ProgramDesc); if (!program_from_memory) { std::string desc_str; ReadBinaryFile(path, &desc_str); main_program->ParseFromString(desc_str); } else { main_program->ParseFromString(path); } return main_program; } void LoadParams(const std::string &path) {} // Load directly to CPU, and latter transfer to other devices. void LoadParam(const std::string &path, Variable *out) { std::ifstream fin(path, std::ios::binary); CHECK(fin.is_open()) << "failed to open file " << path; LoadLoDTensor(fin, out); } bool IsPersistable(const cpp::VarDesc &var) { if (var.Persistable() && var.GetType() != VarDescAPI::Type::FEED_MINIBATCH && var.GetType() != VarDescAPI::Type::FETCH_LIST && var.GetType() != VarDescAPI::Type::RAW) { return true; } return false; } void LoadCombinedParamsPb(const std::string &path, lite::Scope *scope, const cpp::ProgramDesc &cpp_prog, bool params_from_memory) { CHECK(scope); auto prog = cpp_prog; auto &main_block_desc = *prog.GetBlock(0); // Get vars std::vector paramlist; for (size_t i = 0; i < main_block_desc.VarsSize(); ++i) { auto &var = *main_block_desc.GetVar(i); if (!IsPersistable(var)) continue; paramlist.push_back(var.Name()); } std::sort(paramlist.begin(), paramlist.end()); // Load vars auto load_var_func = [&](std::istream &is) { for (size_t i = 0; i < paramlist.size(); ++i) { auto *var = scope->Var(paramlist[i]); // Error checking CHECK(static_cast(is)) << "There is a problem with loading model parameters"; LoadLoDTensor(is, var); } is.peek(); CHECK(is.eof()) << "You are not allowed to load partial data via" << " LoadCombinedParamsPb, use LoadParam instead."; }; if (params_from_memory) { std::stringstream fin(path, std::ios::in | std::ios::binary); load_var_func(fin); } else { std::ifstream fin(path, std::ios::binary); CHECK(fin.is_open()); load_var_func(fin); } } void LoadModelPb(const std::string &model_dir, const std::string &model_file, const std::string ¶m_file, Scope *scope, cpp::ProgramDesc *cpp_prog, bool combined, bool model_from_memory) { CHECK(cpp_prog); CHECK(scope); cpp_prog->ClearBlocks(); // Load model VLOG(4) << "Start load model program..."; std::string prog_path = model_dir + "/__model__"; if (combined) { prog_path = model_file; } framework::proto::ProgramDesc pb_proto_prog = *LoadProgram(prog_path, model_from_memory); pb::ProgramDesc pb_prog(&pb_proto_prog); // Transform to cpp::ProgramDesc TransformProgramDescAnyToCpp(pb_prog, cpp_prog); // Load Params // NOTE: Only main block be used now. VLOG(4) << "Start load model params..."; CHECK(!(!combined && model_from_memory)) << "If you want use the model_from_memory," << " you should load the combined model using cfg.set_model_buffer " "interface."; if (combined) { LoadCombinedParamsPb(param_file, scope, *cpp_prog, model_from_memory); } else { auto main_block = pb_proto_prog.blocks(0); for (auto &var : main_block.vars()) { if (var.name() == "feed" || var.name() == "fetch" || !var.persistable()) continue; std::string file_path = model_dir + "/" + var.name(); VLOG(4) << "reading weight " << var.name(); std::ifstream file(file_path); switch (var.type().type()) { case framework::proto::VarType_Type_LOD_TENSOR: LoadLoDTensor(file, scope->Var(var.name())); break; default: CHECK(false) << "unknown weight type"; } } } #ifdef LITE_WITH_NPU auto main_block = pb_proto_prog.blocks(0); for (auto &op : main_block.ops()) { LOG(INFO) << "op type:" << op.type(); if (op.type() != "graph_op") { continue; } auto xs = op.attrs(); auto it = std::find_if( xs.begin(), xs.end(), [&](const framework::proto::OpDesc_Attr &x) { return x.name() == "model_name"; }); CHECK(it != xs.end()); auto model_name = it->s(); std::string file_path = model_dir + "/" + model_name; CHECK(npu::BuildNPUClient(file_path, model_name)) << "NPU model load failed!"; } #endif VLOG(4) << "Load protobuf model in '" << model_dir << "'' successfully"; } void SaveModelPb(const std::string &model_dir, const Scope &exec_scope, const cpp::ProgramDesc &cpp_prog, bool combined) { MkDirRecur(model_dir); // Save program framework::proto::ProgramDesc pb_proto_prog; pb::ProgramDesc pb_prog(&pb_proto_prog); TransformProgramDescCppToAny(cpp_prog, &pb_prog); std::string prog_path = model_dir + "/__model__"; if (combined) { prog_path = model_dir + "/model"; } std::ofstream model_ostream(prog_path, std::ios_base::binary); CHECK(model_ostream.is_open()); const std::string pb_str = pb_proto_prog.SerializeAsString(); model_ostream.write(pb_str.c_str(), pb_str.size()); model_ostream.close(); // Save Params // NOTE: Only main block be used now. if (combined) { const std::string combined_params_path = model_dir + "/params"; SaveCombinedParamsPb(combined_params_path, exec_scope, cpp_prog); } else { for (auto &item : pb_proto_prog.blocks(0).vars()) { if (item.name() == "feed" || item.name() == "fetch" || !item.persistable()) continue; const std::string path = model_dir + "/" + item.name(); std::ofstream var_ostream(path, std::ios::binary); CHECK(var_ostream.is_open()); SerializeTensor(var_ostream, exec_scope, item.name()); var_ostream.close(); } } VLOG(4) << "Save protobuf model in '" << model_dir << "'' successfully"; } void SaveCombinedParamsPb(const std::string &path, const lite::Scope &exec_scope, const cpp::ProgramDesc &cpp_prog) { auto prog = cpp_prog; auto &main_block_desc = *prog.GetBlock(0); // Get vars std::vector paramlist; for (size_t i = 0; i < main_block_desc.VarsSize(); ++i) { auto &var = *main_block_desc.GetVar(i); if (!IsPersistable(var)) continue; paramlist.push_back(var.Name()); } std::sort(paramlist.begin(), paramlist.end()); // Load vars std::ofstream file(path); CHECK(file.is_open()); for (size_t i = 0; i < paramlist.size(); ++i) { SerializeTensor(file, exec_scope, paramlist[i]); } file.close(); } void TensorToStream(std::ostream &os, const lite::Tensor &tensor) { // the 1st field, uint32_t version constexpr uint32_t version = 0; os.write(reinterpret_cast(&version), sizeof(version)); { uint64_t size = tensor.lod().size(); // the 2st field, LoD information // uint64_t lod_level // uint64_t lod_level_1 size in byte. // int* lod_level_1 data // ... os.write(reinterpret_cast(&size), sizeof(size)); for (auto &each : tensor.lod()) { size = each.size() * sizeof(each.front()); os.write(reinterpret_cast(&size), sizeof(size)); os.write(reinterpret_cast(each.data()), static_cast(size)); } } // There are two version fields in a LoDTensor. os.write(reinterpret_cast(&version), sizeof(version)); { // the 2nd field, tensor description // int32_t size // void* protobuf message framework::proto::VarType::TensorDesc desc; // TODO(Superjomn) support other data types. switch (tensor.precision()) { #define SET_DATA_TYPE(precision, type_desc) \ case precision: \ desc.set_data_type(type_desc); \ break SET_DATA_TYPE(PRECISION(kFloat), framework::proto::VarType_Type_FP32); SET_DATA_TYPE(PRECISION(kInt8), framework::proto::VarType_Type_INT8); SET_DATA_TYPE(PRECISION(kInt16), framework::proto::VarType_Type_INT16); SET_DATA_TYPE(PRECISION(kInt32), framework::proto::VarType_Type_INT32); SET_DATA_TYPE(PRECISION(kInt64), framework::proto::VarType_Type_INT64); #undef SET_DATA_TYPE default: LOG(FATAL) << "unknown precision type: " << PrecisionToStr(tensor.precision()); } auto dims = tensor.dims(); auto *pb_dims = desc.mutable_dims(); pb_dims->Resize(static_cast(dims.size()), 0); auto dims_vec = dims.Vectorize(); std::copy(dims_vec.begin(), dims_vec.end(), pb_dims->begin()); int32_t size = desc.ByteSize(); os.write(reinterpret_cast(&size), sizeof(size)); auto out = desc.SerializeAsString(); os.write(out.data(), size); } { // the 3rd field, tensor data uint64_t size = tensor.memory_size(); CHECK_LT(size, std::numeric_limits::max()) << "Index overflow when writing tensor"; #ifdef LITE_WITH_CUDA if (tensor.target() == TARGET(kCUDA)) { std::unique_ptr tmp_buffer(new char[size]); TargetWrapperCuda::MemcpySync(tmp_buffer.get(), tensor.data(), tensor.data_size(), IoDirection::DtoH); os.write(static_cast(tmp_buffer.get()), static_cast(size)); } else // NOLINT #endif // LITE_WITH_CUDA { os.write(static_cast(tensor.data()), static_cast(size)); } } } void SerializeTensor(std::ostream &os, const lite::Scope &scope, const std::string &var_name) { // Store all the persistable vars. auto *var = scope.FindVar(var_name); const auto &tensor = var->Get(); TensorToStream(os, tensor); } /// For navie buffer void SetParamInfoNaive(naive_buffer::ParamDesc *param_desc, const lite::Scope &scope, const std::string &var_name) { CHECK(param_desc); auto &desc = *param_desc; // the 1st field, uint32_t version constexpr uint32_t version = 0; auto *var = scope.FindVar(var_name); const auto &tensor = var->Get(); desc.SetName(var_name); desc.SetModelVersion(version); desc.SetTensorVersion(version); desc.SetLoDLevel(tensor.lod().size()); desc.SetLoD(tensor.lod()); // TODO(sangoly): support other data types. switch (tensor.precision()) { #define SET_DATA_TYPE(precision, type_desc) \ case precision: \ desc.SetDataType(type_desc); \ break; SET_DATA_TYPE(PRECISION(kFloat), VarDescAPI::VarDataType::FP32); SET_DATA_TYPE(PRECISION(kInt8), VarDescAPI::VarDataType::INT8); SET_DATA_TYPE(PRECISION(kInt16), VarDescAPI::VarDataType::INT16); SET_DATA_TYPE(PRECISION(kInt32), VarDescAPI::VarDataType::INT32); SET_DATA_TYPE(PRECISION(kInt64), VarDescAPI::VarDataType::INT64); #undef SET_DATA_TYPE default: LOG(FATAL) << "unknown precision type: " << PrecisionToStr(tensor.precision()); } desc.SetDim(tensor.dims().Vectorize()); uint64_t size = tensor.memory_size(); CHECK_LT(size, std::numeric_limits::max()) << "Index overflow when writing tensor"; #ifdef LITE_WITH_CUDA if (tensor.target() == TARGET(kCUDA)) { switch (tensor.precision()) { #define DO(precision, type) \ case precision: { \ std::unique_ptr tmp_buffer(new type[tensor.data_size()]); \ TargetWrapperCuda::MemcpySync(tmp_buffer.get(), \ tensor.data(), \ tensor.data_size(), \ IoDirection::DtoH); \ desc.SetData(tmp_buffer.get(), tensor.data_size()); \ } break; DO(PRECISION(kFloat), float); DO(PRECISION(kInt8), int8_t); DO(PRECISION(kInt16), int16_t); DO(PRECISION(kInt32), int32_t); DO(PRECISION(kInt64), int64_t); #undef DO default: LOG(FATAL) << "unknown precision type: " << PrecisionToStr(tensor.precision()); } } else // NOLINT #endif // LITE_WITH_CUDA { switch (tensor.precision()) { #define DO(precision, type) \ case precision: \ desc.SetData(tensor.data(), tensor.data_size()); \ break; DO(PRECISION(kFloat), float); DO(PRECISION(kInt8), int8_t); DO(PRECISION(kInt16), int16_t); DO(PRECISION(kInt32), int32_t); DO(PRECISION(kInt64), int64_t); #undef DO default: LOG(FATAL) << "unknown precision type: " << PrecisionToStr(tensor.precision()); } } } void SaveParamNaive(const std::string &path, const lite::Scope &scope, const std::string &var_name) { naive_buffer::BinaryTable table; naive_buffer::proto::ParamDesc pt_desc(&table); naive_buffer::ParamDesc desc(&pt_desc); SetParamInfoNaive(&desc, scope, var_name); // Save param pt_desc.Save(); table.SaveToFile(path); } void SaveCombinedParamsNaive(const std::string &path, const lite::Scope &exec_scope, const cpp::ProgramDesc &cpp_prog) { naive_buffer::BinaryTable table; naive_buffer::proto::CombinedParamsDesc pt_desc(&table); naive_buffer::CombinedParamsDesc desc(&pt_desc); auto prog = cpp_prog; auto &main_block_desc = *prog.GetBlock(0); for (size_t i = 0; i < main_block_desc.VarsSize(); ++i) { auto &var = *main_block_desc.GetVar(i); if (var.Name() == "feed" || var.Name() == "fetch" || !var.Persistable()) continue; naive_buffer::ParamDesc param_desc(desc.AddParam()); SetParamInfoNaive(¶m_desc, exec_scope, var.Name()); } pt_desc.Save(); table.SaveToFile(path); } void SaveModelNaive(const std::string &model_dir, const Scope &exec_scope, const cpp::ProgramDesc &cpp_prog, bool combined) { MkDirRecur(model_dir); // Save program const std::string prog_path = model_dir + "/__model__.nb"; naive_buffer::BinaryTable table; naive_buffer::proto::ProgramDesc nb_proto_prog(&table); naive_buffer::ProgramDesc nb_prog(&nb_proto_prog); TransformProgramDescCppToAny(cpp_prog, &nb_prog); nb_proto_prog.Save(); table.SaveToFile(prog_path); // Save Params // NOTE: Only main block be used now. if (combined) { const std::string combined_params_path = model_dir + "/param.nb"; SaveCombinedParamsNaive(combined_params_path, exec_scope, cpp_prog); } else { auto prog = cpp_prog; auto &main_block_desc = *prog.GetBlock(0); for (size_t i = 0; i < main_block_desc.VarsSize(); ++i) { auto &var = *main_block_desc.GetVar(i); if (var.Name() == "feed" || var.Name() == "fetch" || !var.Persistable()) continue; const std::string path = model_dir + "/" + var.Name() + ".nb"; SaveParamNaive(path, exec_scope, var.Name()); } } VLOG(4) << "Save naive buffer model in '" << model_dir << "'' successfully"; } #endif template void SetTensorDataNaive(T *out, size_t size, const std::vector &src) { CHECK(out); CHECK(size == src.size()); for (size_t i = 0; i < size; ++i) { out[i] = src[i]; } } void GetParamInfoNaive(const naive_buffer::ParamDesc &desc, lite::Scope *scope, const std::string &name) { CHECK(scope); CHECK_EQ(desc.Name(), name) << "Var name not equal: ParamDesc.name=" << desc.Name() << "vs filename=" << name; auto *tensor = scope->Var(name)->GetMutable(); VLOG(3) << "model version " << desc.ModelVersion(); CHECK_EQ(desc.TensorVersion(), 0U) << "Only version 0 is supported"; // Load LoD info auto *tgt_lod = tensor->mutable_lod(); auto desc_lod = desc.LoD(); tgt_lod->assign(desc_lod.begin(), desc_lod.end()); // Load Dim info tensor->Resize(lite::DDim(desc.Dim())); // Load data switch (desc.GetDataType()) { #define SET_TENSOR(data_type__, T, precision) \ case VarDescAPI::VarDataType::data_type__: \ SetTensorDataNaive( \ tensor->mutable_data(), tensor->data_size(), desc.Data()); \ tensor->set_precision(precision); \ break // SET_TENSOR(BOOL, bool, PRECISION(kBool)); SET_TENSOR(FP32, float, PRECISION(kFloat)); SET_TENSOR(INT8, int8_t, PRECISION(kInt8)); SET_TENSOR(INT16, int16_t, PRECISION(kInt16)); SET_TENSOR(INT32, int32_t, PRECISION(kInt32)); SET_TENSOR(INT64, int64_t, PRECISION(kInt64)); #undef SET_TENSOR default: LOG(FATAL) << "unknown type"; } tensor->set_persistable(true); } void LoadParamNaive(const std::string &path, lite::Scope *scope, const std::string &name) { // Load param naive_buffer::BinaryTable table; table.LoadFromFile(path); naive_buffer::proto::ParamDesc pt_desc(&table); pt_desc.Load(); naive_buffer::ParamDesc desc(&pt_desc); GetParamInfoNaive(desc, scope, name); } void LoadCombinedParamsNaive(const std::string &path, lite::Scope *scope, const cpp::ProgramDesc &cpp_prog, bool params_from_memory) { naive_buffer::BinaryTable table; if (params_from_memory) { table.LoadFromMemory(path.c_str(), path.length()); } else { table.LoadFromFile(path); } naive_buffer::proto::CombinedParamsDesc pt_desc(&table); pt_desc.Load(); naive_buffer::CombinedParamsDesc desc(&pt_desc); std::set param_names; for (size_t i = 0; i < desc.ParamsSize(); ++i) { naive_buffer::ParamDesc param_desc(desc.GetParam(i)); GetParamInfoNaive(param_desc, scope, param_desc.Name()); param_names.insert(param_desc.Name()); } // Check all params loaded auto prog = cpp_prog; auto &main_block_desc = *prog.GetBlock(0); for (size_t i = 0; i < main_block_desc.VarsSize(); ++i) { auto &var = *main_block_desc.GetVar(i); if (var.Name() == "feed" || var.Name() == "fetch" || !var.Persistable()) continue; CHECK(param_names.count(var.Name())) << "Persistable var[" << var.Name() << "] not found"; } } void LoadModelNaive(const std::string &model_dir, Scope *scope, cpp::ProgramDesc *cpp_prog, bool combined) { CHECK(cpp_prog); CHECK(scope); cpp_prog->ClearBlocks(); // Load model const std::string prog_path = model_dir + "/__model__.nb"; naive_buffer::BinaryTable table; table.LoadFromFile(prog_path); naive_buffer::proto::ProgramDesc nb_proto_prog(&table); nb_proto_prog.Load(); naive_buffer::ProgramDesc nb_prog(&nb_proto_prog); // Transform to cpp::ProgramDesc TransformProgramDescAnyToCpp(nb_prog, cpp_prog); // Load Params // NOTE: Only main block be used now. if (combined) { const std::string combined_params_path = model_dir + "/param.nb"; LoadCombinedParamsNaive(combined_params_path, scope, *cpp_prog, false); } else { auto &prog = *cpp_prog; auto &main_block_desc = *prog.GetBlock(0); for (size_t i = 0; i < main_block_desc.VarsSize(); ++i) { auto &var = *main_block_desc.GetVar(i); if (var.Name() == "feed" || var.Name() == "fetch" || !var.Persistable()) continue; std::string file_path = model_dir + "/" + var.Name() + ".nb"; VLOG(4) << "reading weight " << var.Name(); switch (var.GetType()) { case VarDescAPI::Type::LOD_TENSOR: LoadParamNaive(file_path, scope, var.Name()); break; default: CHECK(false) << "unknown weight type"; } } } #ifdef LITE_WITH_NPU auto &prog = *cpp_prog; auto &main_block_desc = *prog.GetBlock(0); for (size_t i = 0; i < main_block_desc.OpsSize(); ++i) { auto &op = *main_block_desc.GetOp(i); if (op.Type() != "graph_op") { continue; } auto model_name = op.GetAttr("model_name"); std::string file_path = model_dir + "/" + model_name; CHECK(npu::BuildNPUClient(file_path, model_name)) << "NPU model load failed!"; } #endif VLOG(4) << "Load naive buffer model in '" << model_dir << "' successfully"; } void LoadModelNaiveFromMemory(const std::string &model_buffer, const std::string ¶m_buffer, Scope *scope, cpp::ProgramDesc *cpp_prog) { CHECK(cpp_prog); CHECK(scope); cpp_prog->ClearBlocks(); // Load model std::string prog_path = model_buffer; naive_buffer::BinaryTable table; table.LoadFromMemory(prog_path.c_str(), prog_path.length()); naive_buffer::proto::ProgramDesc nb_proto_prog(&table); nb_proto_prog.Load(); naive_buffer::ProgramDesc nb_prog(&nb_proto_prog); // Transform to cpp::ProgramDesc TransformProgramDescAnyToCpp(nb_prog, cpp_prog); // Load Params // NOTE: Only main block be used now. // only combined Params are supported in Loading Model from memory std::string combined_params_path = param_buffer; LoadCombinedParamsNaive(combined_params_path, scope, *cpp_prog, true); #ifdef LITE_WITH_NPU LOG(FATAL) << "load from memory is not supported by NPU"; #endif VLOG(4) << "Load model from naive buffer memory successfully"; } } // namespace lite } // namespace paddle