// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/operators/pool_op.h" #include "lite/kernels/apu/bridges/graph.h" #include "lite/kernels/apu/bridges/utility.h" #include "lite/kernels/npu/bridges/registry.h" namespace paddle { namespace lite { namespace subgraph { namespace apu { int PoolConverter(void* ctx, OpLite* op, KernelBase* kernel) { CHECK(ctx != nullptr); CHECK(op != nullptr); auto graph = static_cast(ctx); auto model = graph->model(); auto op_info = op->op_info(); auto op_type = op_info->Type(); auto scope = op->scope(); VLOG(3) << "[APU] Converting [" + op_type + "] "; // Get input and output vars and op attributes auto x_name = op_info->Input("X").front(); auto x = scope->FindMutableTensor(x_name); auto x_dims = x->dims(); auto out_name = op_info->Output("Out").front(); auto out = scope->FindMutableTensor(out_name); auto out_dims = out->dims(); auto pooling_type = op_info->GetAttr("pooling_type"); auto global_pooling = op_info->GetAttr("global_pooling"); auto ksize = op_info->GetAttr>("ksize"); auto paddings = op_info->GetAttr>("paddings"); // pool mode if ((pooling_type == "max") || (pooling_type == "avg")) { } else { LOG(WARNING) << "[APU] Unsupported pooling type: " << pooling_type; return FAILED; } // pad mode int pad_mode = 0; std::string padding_algorithm(""); if (op_info->HasAttr("padding_algorithm")) { padding_algorithm = op_info->GetAttr("padding_algorithm"); } if (padding_algorithm == "SAME") { pad_mode = 6; } else if (padding_algorithm == "VALID") { pad_mode = 5; } // paddings and strides if (paddings.size() == 2L) { for (size_t i = 0; i < 2L; ++i) { int copy_pad = *(paddings.begin() + 2 * i); paddings.insert(paddings.begin() + 2 * i + 1, copy_pad); } } CHECK_EQ(paddings.size(), 4L) << "[APU] Paddings size should be the same or twice as the inputs size."; bool adaptive = false; if (op_info->HasAttr("adaptive")) { adaptive = op_info->GetAttr("adaptive"); } auto strides = op_info->GetAttr>("strides"); lite::operators::UpdatePadding(&paddings, global_pooling, adaptive, padding_algorithm, x->dims(), strides, ksize); // Add x tensor type float x_scale = 1.0f; float out_scale = 1.0f; if (op_info->HasAttr("enable_int8")) { if (op_info->GetAttr("enable_int8")) { auto x_name = op_info->Input("X").front(); auto out_name = op_info->Output("Out").front(); if (op_info->HasInputScale(x_name)) x_scale = op_info->GetInputScale(x_name)[0]; if (op_info->HasOutputScale(out_name)) out_scale = op_info->GetOutputScale(out_name)[0]; } else { LOG(WARNING) << "Do not enable_int8"; return FAILED; } } else { LOG(WARNING) << "Do not enable_int8"; return FAILED; } NeuronOperandType xType; xType.type = NEURON_TENSOR_QUANT8_ASYMM; xType.scale = x_scale; xType.zeroPoint = 128; xType.dimensionCount = x_dims.size(); std::vector dims_x = {(uint32_t)x_dims[0], (uint32_t)x_dims[2], (uint32_t)x_dims[3], (uint32_t)x_dims[1]}; xType.dimensions = &dims_x[0]; std::shared_ptr x_node = nullptr; if (graph->Has(x_name)) { LOG(INFO) << "Graph has " << x_name; // input operand already exist x_node = graph->Get(x_name); } else { // add input operand NeuronModel_addOperand(model, &xType); // 0: x x_node = graph->Add(x_name, dims_x); } VLOG(3) << "x_scale: " << x_scale << ", xType: " << xType.dimensions[0] << ":" << xType.dimensions[1] << ":" << xType.dimensions[2] << ":" << xType.dimensions[3]; NeuronOperandType int32Type; int32Type.type = NEURON_INT32; int32Type.dimensionCount = 0; std::vector dims_int32 = {0}; std::shared_ptr paddingL_node = nullptr; NeuronModel_addOperand(model, &int32Type); // 1: padding left paddingL_node = graph->Add(x_name + "_padding_left", dims_int32); std::shared_ptr paddingR_node = nullptr; NeuronModel_addOperand(model, &int32Type); // 2: padding right paddingR_node = graph->Add(x_name + "_padding_right", dims_int32); std::shared_ptr paddingT_node = nullptr; NeuronModel_addOperand(model, &int32Type); // 3: padding top paddingT_node = graph->Add(x_name + "_padding_top", dims_int32); std::shared_ptr paddingB_node = nullptr; NeuronModel_addOperand(model, &int32Type); // 4: padding bottom paddingB_node = graph->Add(x_name + "_padding_bottom", dims_int32); std::shared_ptr strideW_node = nullptr; NeuronModel_addOperand(model, &int32Type); // 5: stride width strideW_node = graph->Add(x_name + "_stride_width", dims_int32); std::shared_ptr strideH_node = nullptr; NeuronModel_addOperand(model, &int32Type); // 6: stride height strideH_node = graph->Add(x_name + "_stride_height", dims_int32); std::shared_ptr filterW_node = nullptr; NeuronModel_addOperand(model, &int32Type); // 7: filter width filterW_node = graph->Add(x_name + "_filter_width", dims_int32); std::shared_ptr filterH_node = nullptr; NeuronModel_addOperand(model, &int32Type); // 8: filter height filterH_node = graph->Add(x_name + "_filter_height", dims_int32); std::shared_ptr fuse_node = nullptr; NeuronModel_addOperand(model, &int32Type); // 9: fuse fuse_node = graph->Add(x_name + "_fuse", dims_int32); // Add out type // Add output tensor type NeuronOperandType outType; outType.type = NEURON_TENSOR_QUANT8_ASYMM; outType.scale = out_scale; outType.zeroPoint = 128; outType.dimensionCount = out_dims.size(); std::vector dims_out = {(uint32_t)out_dims[0], (uint32_t)out_dims[2], (uint32_t)out_dims[3], (uint32_t)out_dims[1]}; outType.dimensions = &dims_out[0]; std::shared_ptr out_node = nullptr; if (graph->Has(out_name)) { out_node = graph->Get(out_name); } else { NeuronModel_addOperand(model, &outType); // out out_node = graph->Add(out_name, dims_out); } VLOG(3) << "output_scale: " << x_scale << ", outType: " << outType.dimensions[0] << ":" << outType.dimensions[1] << ":" << outType.dimensions[2] << ":" << outType.dimensions[3]; // Add padding value int32_t padding_val[1]; padding_val[0] = paddings[2]; NeuronModel_setOperandValue( model, paddingL_node->index(), padding_val, sizeof(int32_t) * 1); padding_val[0] = paddings[3]; NeuronModel_setOperandValue( model, paddingR_node->index(), padding_val, sizeof(int32_t) * 1); padding_val[0] = paddings[0]; NeuronModel_setOperandValue( model, paddingT_node->index(), padding_val, sizeof(int32_t) * 1); padding_val[0] = paddings[1]; NeuronModel_setOperandValue( model, paddingB_node->index(), padding_val, sizeof(int32_t) * 1); // Add Stride int32_t stride_val[1]; stride_val[0] = strides[1]; // width NeuronModel_setOperandValue( model, strideW_node->index(), stride_val, sizeof(int32_t) * 1); stride_val[0] = strides[0]; // height NeuronModel_setOperandValue( model, strideH_node->index(), stride_val, sizeof(int32_t) * 1); // Add filter int32_t filter_val[1]; filter_val[0] = global_pooling ? x_dims[3] : ksize[1]; // width NeuronModel_setOperandValue( model, filterW_node->index(), filter_val, sizeof(int32_t) * 1); filter_val[0] = global_pooling ? x_dims[2] : ksize[0]; // height NeuronModel_setOperandValue( model, filterH_node->index(), filter_val, sizeof(int32_t) * 1); // Add fuse int32_t fuse_val[1] = {0}; NeuronModel_setOperandValue( model, fuse_node->index(), fuse_val, sizeof(int32_t) * 1); std::vector addInIndex = {x_node->index(), paddingL_node->index(), paddingR_node->index(), paddingT_node->index(), paddingB_node->index(), strideW_node->index(), strideH_node->index(), filterW_node->index(), filterH_node->index(), fuse_node->index()}; std::vector addOutIndex = {out_node->index()}; int neuron_errCode; if (pooling_type == "max") { neuron_errCode = NeuronModel_addOperation(model, NEURON_MAX_POOL_2D, addInIndex.size(), &addInIndex[0], addOutIndex.size(), &addOutIndex[0]); } else { neuron_errCode = NeuronModel_addOperation(model, NEURON_AVERAGE_POOL_2D, addInIndex.size(), &addInIndex[0], addOutIndex.size(), &addOutIndex[0]); } return REBUILD_WHEN_SHAPE_CHANGED; } } // namespace apu } // namespace subgraph } // namespace lite } // namespace paddle REGISTER_SUBGRAPH_BRIDGE(pool2d, kAPU, paddle::lite::subgraph::apu::PoolConverter);