// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/mlu/bridges/graph.h" #include "lite/kernels/mlu/bridges/utility.h" #include "lite/kernels/npu/bridges/registry.h" namespace paddle { namespace lite { namespace subgraph { namespace mlu { int FCConverter(void* ctx, OpLite* op, KernelBase* kernel) { CHECK(ctx != nullptr); CHECK(op != nullptr); auto graph = static_cast(ctx); auto op_info = op->op_info(); auto op_type = op_info->Type(); auto scope = op->scope(); VLOG(3) << "[MLU] Converting " + op_type + "..."; auto x_var_name = op_info->Input("Input").front(); auto w_var_name = op_info->Input("W").front(); auto output_var_name = op_info->Output("Out").front(); // int in_num_col_dims = op_info->GetAttr("in_num_col_dims"); auto x = scope->FindVar(x_var_name)->GetMutable(); auto w = scope->FindVar(w_var_name)->GetMutable(); auto x_dims = x->dims(); auto w_dims = w->dims(); CHECK_GE(x_dims.size(), 2UL); CHECK_EQ(w_dims.size(), 2UL); // Create w node std::vector w_shape{w_dims[1], w_dims[0]}; auto w_tensor = graph->AddNode( w_var_name, w_shape, CNML_FILTER, CNML_NCHW, graph->FPType()); auto input_scale = op_info->GetAttr("input_scale"); std::vector output_shape_nhwc({x_dims[0], 1, 1, w_dims[1]}); auto output_tensor = graph->AddNode(output_var_name, output_shape_nhwc, CNML_TENSOR, CNML_NHWC, graph->FPType()); scope->FindVar(output_var_name) ->GetMutable<::paddle::lite::Tensor>() ->Resize(output_shape_nhwc); std::string bias_var_name; std::shared_ptr bias_tensor; // Add bias node if bias tensor exists if (HasInputArg(op_info, scope, "Bias")) { bias_var_name = op_info->Input("Bias").front(); auto bias = scope->FindVar(bias_var_name)->GetMutable(); auto bias_dims = bias->dims(); CHECK(!graph->HasNode(bias_var_name)); // CHECK_EQ(bias_dims.production(), n); bias_tensor = graph->AddNode(bias_var_name, bias_dims.Vectorize(), CNML_CONST, CNML_CNHW, graph->FPType()); graph->BindConstData(bias_var_name, bias); } cnmlBaseOp_t fc_op; CNML_CALL(cnmlCreateMlpOp(&fc_op, graph->GetNode(x_var_name)->mlu_tensor(), output_tensor->mlu_tensor(), w_tensor->mlu_tensor(), bias_tensor ? bias_tensor->mlu_tensor() : nullptr)); graph->SetComputingDataType( fc_op, graph->GetNode(x_var_name)->mlu_tensor(), 1 / input_scale); auto weight_scale = op_info->GetAttr>("weight_scale"); // LOG(INFO) << "W precision " << int(w->precision()); if (w->precision() == PrecisionType::kUnk || w->precision() == PrecisionType::kInt8) { std::vector w_dequant(w->data_size()); dequant(w_dequant.data(), w->mutable_data(), 1, w_dims[1], w_dims[0], weight_scale); for (int i = 0; i < w_dims[1]; i++) { for (int j = 0; j < w_dims[0]; j++) { w->mutable_data()[i * w_dims[0] + j] = w_dequant[i + j * w_dims[1]]; } } w->set_precision(PrecisionType::kFloat); } else if (w->precision() != PrecisionType::kFloat) { LOG(FATAL) << "UnSupported weight precision!"; } // graph->BindConstData(w_var_name, w_dequant.data()); graph->BindConstData(w_var_name, w); graph->SetComputingDataType( fc_op, w_tensor->mlu_tensor(), 1 / *min_element(weight_scale.begin(), weight_scale.end())); graph->FuseOp(fc_op); return REBUILD_WHEN_SHAPE_CHANGED; } } // namespace mlu } // namespace subgraph } // namespace lite } // namespace paddle REGISTER_SUBGRAPH_BRIDGE(fc, kMLU, paddle::lite::subgraph::mlu::FCConverter);