// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "lite/core/kernel.h" #include "lite/core/op_registry.h" #include "lite/opencl/cl_include.h" #include "lite/operators/op_params.h" #include "lite/utils/replace_stl/stream.h" #include "lite/utils/string.h" namespace paddle { namespace lite { namespace kernels { namespace opencl { class PoolCompute : public KernelLite { public: using param_t = operators::PoolParam; void PrepareForRun() override { const auto& param = *param_.get_mutable(); kernel_func_name_ += param.pooling_type; auto& context = ctx_->As(); context.cl_context()->AddKernel( kernel_func_name_, "buffer/pool_kernel.cl", build_options_); } void Run() override { const auto& param = *param_.get_mutable(); const auto& in_dims = param.x->dims(); const auto& out_dims = param.output->dims(); const std::string pooling_type = param.pooling_type; const bool global_pooling = param.global_pooling; std::vector paddings = param.paddings; std::vector strides = param.strides; std::vector ksize = param.ksize; if (global_pooling) { for (size_t i = 0; i < ksize.size(); ++i) { paddings[i] = 0; ksize[i] = static_cast(in_dims[i + 2]); } } auto& context = ctx_->As(); CHECK(context.cl_context() != nullptr); auto* input_buf = param.x->data(); auto* output_buf = param.output->mutable_data(TARGET(kOpenCL)); STL::stringstream kernel_key; kernel_key << kernel_func_name_ << build_options_; auto kernel = context.cl_context()->GetKernel(kernel_key.str()); cl_int status; auto numel = out_dims.production(); int arg_idx = 0; status = kernel.setArg(arg_idx, static_cast(numel)); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, *input_buf); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(in_dims[1])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(in_dims[2])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(in_dims[3])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(out_dims[2])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(out_dims[3])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(ksize[0])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(ksize[1])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(strides[0])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(strides[1])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(paddings[0])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(paddings[1])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, *output_buf); CL_CHECK_FATAL(status); auto global_work_size = cl::NDRange(static_cast(numel)); status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel( kernel, cl::NullRange, global_work_size, cl::NullRange, nullptr, event_.get()); CL_CHECK_FATAL(status); context.cl_wait_list()->emplace(output_buf, event_); } private: std::string kernel_func_name_{"pool_"}; std::string build_options_{"-DCL_DTYPE=float"}; std::shared_ptr event_{new cl::Event}; }; } // namespace opencl } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(pool2d, kOpenCL, kFloat, kNCHW, paddle::lite::kernels::opencl::PoolCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kOpenCL))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kOpenCL))}) .Finalize();