// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/operators/elementwise_ops.h" #include #include #include "lite/core/op_registry.h" #include "lite/kernels/xpu/bridges/registry.h" #include "lite/kernels/xpu/bridges/test_helper.h" namespace paddle { namespace lite { namespace kernels { namespace xpu { namespace bridges { template void elementwise_add_ref(const std::shared_ptr op) { Scope* scope = op->scope(); const OpInfo* op_info = op->op_info(); auto x = scope->FindVar(op_info->Input("X").front())->GetMutable(); auto y = scope->FindVar(op_info->Input("Y").front())->GetMutable(); auto out = scope->FindVar(op_info->Output("Out").front())->GetMutable(); auto x_data = x->data(); auto y_data = y->data(); dtype* out_data = out->mutable_data(); auto x_dims = x->dims(); auto y_dims = y->dims(); int axis = op_info->GetAttr("axis"); if (axis < 0) { axis = x_dims.size() - y_dims.size(); } int batch = 1; int channels = 1; int num = 1; for (int i = 0; i < axis; ++i) { batch *= x_dims[i]; } for (int i = 0; i < y_dims.size(); ++i) { channels *= y_dims[i]; } for (int i = y_dims.size() + axis; i < x_dims.size(); ++i) { num *= x_dims[i]; } // do elementwise add/sub/max... std::string elt_type = "add"; if (elt_type == "add") { for (int i = 0; i < batch; ++i) { for (int j = 0; j < channels; ++j) { int offset = (i * channels + j) * num; const dtype* din_ptr = x_data + offset; const dtype diny_data = y_data[j]; dtype* dout_ptr = out_data + offset; for (int k = 0; k < num; ++k) { *dout_ptr = *din_ptr + diny_data; dout_ptr++; din_ptr++; } } } } else if (elt_type == "sub") { for (int i = 0; i < batch; ++i) { for (int j = 0; j < channels; ++j) { int offset = (i * channels + j) * num; const dtype* din_ptr = x_data + offset; const dtype diny_data = y_data[j]; dtype* dout_ptr = out_data + offset; for (int k = 0; k < num; ++k) { *dout_ptr = *din_ptr - diny_data; dout_ptr++; din_ptr++; } } } } else if (elt_type == "mul") { for (int i = 0; i < batch; ++i) { for (int j = 0; j < channels; ++j) { int offset = (i * channels + j) * num; const dtype* din_ptr = x_data + offset; const dtype diny_data = y_data[j]; dtype* dout_ptr = out_data + offset; for (int k = 0; k < num; ++k) { *dout_ptr = *din_ptr * diny_data; dout_ptr++; din_ptr++; } } } } else if (elt_type == "max") { for (int i = 0; i < batch; ++i) { for (int j = 0; j < channels; ++j) { int offset = (i * channels + j) * num; const dtype* din_ptr = x_data + offset; const dtype diny_data = y_data[j]; dtype* dout_ptr = out_data + offset; for (int k = 0; k < num; ++k) { *dout_ptr = std::max(*din_ptr, diny_data); dout_ptr++; din_ptr++; } } } } else { LOG(FATAL) << "unsupported Elementwise type: " << elt_type; } } void test_elementwise_add(std::vector x_dims, std::vector y_dims, int axis) { // prepare input&output variables Scope scope; std::string x_var_name = "x"; std::string y_var_name = "y"; std::string out_var_name = "out"; std::string out_ref_var_name = "out_ref"; auto* x = scope.Var(x_var_name)->GetMutable(); auto* y = scope.Var(y_var_name)->GetMutable(); auto* out = scope.Var(out_var_name)->GetMutable(); auto* out_ref = scope.Var(out_ref_var_name)->GetMutable(); x->Resize(x_dims); if (y_dims.size() == 0) { y->Resize(x_dims); } else { y->Resize(y_dims); } // initialize input&output data FillTensor(x); FillTensor(y); // initialize op desc cpp::OpDesc opdesc; opdesc.SetType("elementwise_add"); opdesc.SetInput("X", {x_var_name}); opdesc.SetInput("Y", {y_var_name}); opdesc.SetOutput("Out", {out_var_name}); opdesc.SetAttr("axis", axis); // create and convert op to XPU model, then run it on XPU auto op = CreateOp(opdesc, &scope); LauchOp(op, {x_var_name, y_var_name}, {out_var_name}); out_ref->CopyDataFrom(*out); // execute reference implementation and save to output tensor elementwise_add_ref(op); // compare results auto* out_data = out->mutable_data(); auto* out_ref_data = out_ref->mutable_data(); for (int i = 0; i < out->dims().production(); i++) { EXPECT_NEAR(out_data[i], out_ref_data[i], 1e-5); } } // xpu's bias_add only support y with one dimension TEST(XPUBridges, elementwise_add) { test_elementwise_add({1, 2, 3, 4}, {1}, 0); test_elementwise_add({1, 2, 3, 4}, {2}, 1); test_elementwise_add({2, 2, 3, 4}, {3}, 2); test_elementwise_add({2, 2, 3, 4}, {4}, 3); test_elementwise_add({2, 2, 3, 4}, {4}, -1); test_elementwise_add({2, 2, 3, 4}, {}, -1); } } // namespace bridges } // namespace xpu } // namespace kernels } // namespace lite } // namespace paddle USE_LITE_OP(elementwise_add); USE_XPU_BRIDGE(elementwise_add);