// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/backends/xpu/runtime.h" #include #include "lite/utils/cp_logging.h" namespace paddle { namespace lite { namespace xpu { // Extract the model data and recover the XPU model for inference, the function // is called by the graph computing kernel when the graph op is executed. // Due to the lack of XPU APIs for loading and recovering the XPU model from // memory, the key name is obtained from the weight tensor of graph op, to get // the runtime object for inference from the global variable 'DeviceInfo'. // TODO(hong19860320) Recover the XPU model from the weight tensor of graph op. bool LoadModel(const lite::Tensor &model, std::shared_ptr *runtime) { LOG(INFO) << "[XPU] Load Model."; CHECK_GT(model.dims().production(), 0); std::string name(reinterpret_cast(model.data())); LOG(INFO) << "[XPU] Model Name: " << name; CHECK(runtime != nullptr); *runtime = DeviceInfo::Global().Find(name); if (*runtime == nullptr) { LOG(WARNING) << "[XPU] Load Model failed!"; return false; } return true; } } // namespace xpu } // namespace lite } // namespace paddle