/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "framework/executor.h" #include #include #include #include #include "common/enforce.h" #include "common/log.h" #include "framework/context.h" #include "framework/framework.pb-c.h" #include "framework/lod_tensor.h" #include "framework/operator.h" #include "framework/program/program-optimize/program_optimize.h" #include "framework/program/program_desc.h" #include "framework/program/var_desc.h" #include "framework/scope.h" #include "framework/tensor.h" #include "memory/t_malloc.h" #include "pass/memory_optimize.h" #include "pass/model_obfuscate.h" #ifdef PADDLE_MOBILE_CL #include "framework/cl/cl_image.h" #include "pass/memory_optimize_cl.h" #endif namespace paddle_mobile { namespace framework { #pragma mark - executor template void Executor::SetThreadNum(int thread_num, PowerMode power_mode) { CPUContext::Context()->set_thread_num(thread_num, power_mode); } template Executor::Executor(const Program &program, paddle_mobile::PaddleMobileConfigInternal config, int batch_size, const bool use_optimize, const bool lod_mode) : program_(program), batch_size_(batch_size), use_optimize_(use_optimize), lod_mode_(lod_mode), config_(config) { DLOG << "executor in lod mode: " << lod_mode; Variable *variable_ptr = program_.scope->Var("batch_size"); variable_ptr->SetValue(batch_size); program_desc_ = use_optimize_ ? program_.optimizeProgram : program_.originProgram; PADDLE_MOBILE_ENFORCE(program_desc_ != nullptr, "program_desc_ should not be nullptr"); #if !defined(PADDLE_MOBILE_FPGA) && !defined(PADDLE_MOBILE_FPGA_KD) && \ !defined(PADDLE_MOBILE_CL) if (config_.memory_optimization_level != NoMemoryOptimization) { pass::MemoryOptPass()(program_desc_.get(), program_.scope.get(), config_.memory_optimization_level); } #endif // resize feed and fetch list // should init feed and fetch variables before infer shape InitFeedFetchList(); const auto &blocks = program_desc_->Blocks(); std::shared_ptr block_desc = blocks[0]; std::vector> ops = block_desc->Ops(); for (int j = 0; j < ops.size(); ++j) { std::shared_ptr op_desc = ops[j]; DLOG << "create op: " << op_desc->Type(); auto op_handler = OpRegistry::CreateOp( op_desc->Type(), op_desc->GetInputs(), op_desc->GetOutputs(), op_desc->GetAttrMap(), program_.scope.get()); // infer shape to reshape inputs and outputs before predict, // but for lod mode, it still need to infer shape in runtime if (!lod_mode) { op_handler->InferShape(); } ops_of_block0_.push_back(op_handler); } #ifdef PADDLE_MOBILE_FPGA_V2 InitQuantMemory(); #endif if (program_.combined) { InitCombineMemory(); } else { InitMemory(); } int count = 0; #ifdef PADDLE_MOBILE_PROFILE std::vector profile(ops_of_block0_.size()); struct timespec ts; int op_index = 0; #endif for (auto &op_handler : ops_of_block0_) { #ifdef PADDLE_MOBILE_PROFILE clock_gettime(CLOCK_MONOTONIC, &ts); profile[op_index].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec; #endif DLOG << "Initialize op[" << count++ << "]: " << op_handler->Type(); if (op_handler->Type() == "feed" || op_handler->Type() == "fetch") { op_handler->setPrePostType(config_.pre_post_type); } op_handler->Init(); #ifdef PADDLE_MOBILE_PROFILE clock_gettime(CLOCK_MONOTONIC, &ts); profile[op_index].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec; ++op_index; #endif } #ifdef PADDLE_MOBILE_PROFILE printf("================[ op init profile ]==================\n"); PrintProfile(profile); #endif ApplyMemoryOptimise(config, lod_mode); } template void Executor::ApplyMemoryOptimise( const PaddleMobileConfigInternal &config, const bool lod_mode) const {} #ifdef PADDLE_MOBILE_CL template <> void Executor::ApplyMemoryOptimise( const PaddleMobileConfigInternal &config, const bool lod_mode) const { if (!config.load_when_predict && !lod_mode && config_.memory_optimization_level != NoMemoryOptimization) { pass::MemoryOptPassCl()(program_desc_.get(), program_.scope.get(), config_.memory_optimization_level); } } #endif template void Executor::InitFeedFetchList() { std::unordered_map feed_indices, fetch_indices; for (const auto &block : program_desc_->Blocks()) { for (const auto &op_desc : block->Ops()) { if (op_desc->Type() == "feed") { std::string name = op_desc->Output("Out")[0]; feed_indices[name] = op_desc->GetAttr("col").Get(); } else if (op_desc->Type() == "fetch") { std::string name = op_desc->Input("X")[0]; fetch_indices[name] = op_desc->GetAttr("col").Get(); } } } feed_indices_.swap(feed_indices); fetch_indices_.swap(fetch_indices); auto *feed_var = program_.scope->Var("feed"); auto *feed_list = feed_var->template GetMutable(); feed_list->resize(feed_indices_.size()); auto *fetch_var = program_.scope->Var("fetch"); auto *fetch_list = fetch_var->template GetMutable(); fetch_list->resize(fetch_indices_.size()); } template static void LoadMemInternal(void **in_data, void *out_data, int64_t size, bool quant_uint8 = false, int quant_fold = 1) { char **data_buf = reinterpret_cast(in_data); T *tensor_data = reinterpret_cast(out_data); if (quant_uint8) { const int minimal_fold_size = 2; quant_fold = fmin(fmax(1, size / minimal_fold_size), quant_fold); int step = fmax(size / quant_fold, 1); int visited_fold = 0; while (visited_fold * step < size) { // should be moved into operator init function float min_value; float max_value; memory::Copy(&min_value, *data_buf, sizeof(float)); memory::Copy(&max_value, *data_buf + sizeof(float), sizeof(float)); *data_buf += 2 * sizeof(float); const float factor = (max_value - min_value) / 255.0; const uint8_t *uint8_data = reinterpret_cast(*data_buf); int k = 0; for (; k < step; ++k) { int tensor_data_idx = visited_fold * step + k; if (tensor_data_idx >= size) { break; } tensor_data[tensor_data_idx] = uint8_data[k] * factor + min_value; } *data_buf += k * sizeof(uint8_t); visited_fold++; } } else { memory::Copy(tensor_data, *data_buf, size * sizeof(T)); *data_buf += size * sizeof(T); } } template void Executor::LoadMemory(void **data, const std::shared_ptr var_desc, LoDTensor *tensor) { char **data_buf = reinterpret_cast(data); // version uint32_t version = *(reinterpret_cast(*data_buf)); *data_buf += sizeof(uint32_t); // lod information // uint64_t lod_level = *(reinterpret_cast(*data_buf)); uint64_t lod_level = 0; memory::Copy(&lod_level, *data_buf, sizeof(uint64_t)); *data_buf += sizeof(uint64_t); auto *lod = tensor->mutable_lod(); lod->resize(lod_level); for (uint64_t i = 0; i < lod_level; ++i) { uint64_t size = *(reinterpret_cast(*data_buf)); *data_buf += sizeof(uint64_t); std::vector tmp_dim(size / sizeof(size_t)); memory::Copy(tmp_dim.data(), *data_buf, size); (*lod)[i] = std::move(tmp_dim); *data_buf += size; } // tensor version uint32_t tensor_version = *(reinterpret_cast(*data_buf)); *data_buf += sizeof(uint32_t); // tensor desc size int32_t tensor_desc_size = *(reinterpret_cast(*data_buf)); *data_buf += sizeof(int32_t); // skip tensor desc *data_buf += tensor_desc_size; const TensorDesc &tensor_desc = var_desc->Tensor_desc(); tensor->Resize(make_ddim(tensor_desc.Dims())); // parse tensor from stream switch (tensor_desc.DataType()) { case VARTYPE_TYPE_FP32: LoadMemInternal( reinterpret_cast(data_buf), reinterpret_cast(tensor->mutable_data()), tensor->numel(), program_.quantification, program_.quantification_fold); break; case VARTYPE_TYPE_INT8: LoadMemInternal( reinterpret_cast(data_buf), reinterpret_cast(tensor->mutable_data()), tensor->numel()); break; case VARTYPE_TYPE_INT32: LoadMemInternal(reinterpret_cast(data_buf), reinterpret_cast(tensor->mutable_data()), tensor->numel()); break; default: LOG(kLOG_ERROR) << "data type is not supported"; } } template void Executor::InitMemory() { for (const auto &block : program_desc_->Blocks()) { for (const auto &var_desc : block->Vars()) { auto var = program_.scope->Var(var_desc->Name()); if (var_desc->Persistable()) { if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") { var->template GetMutable(); continue; } DLOG << "init persistable var: " << var_desc->Name(); char *origin_data = ReadFileToBuff(program_.model_path + "/" + var_desc->Name()); char *data = origin_data; auto tensor = var->template GetMutable(); LoadMemory(reinterpret_cast(&data), var_desc, tensor); delete[] origin_data; } else { DLOG << "init no persistable var: " << var_desc->Name(); varInputMemory(var_desc, var); } } } } template void Executor::InitCombineMemory() { char *origin_data = nullptr; bool self_alloc = false; if (program_.combined_params_buf && program_.combined_params_len) { origin_data = reinterpret_cast( const_cast(program_.combined_params_buf)); if (config_.model_obfuscate_key != "") { auto obfuscator = pass::ModelObfuscatePass(config_.model_obfuscate_key); obfuscator.convert_data(origin_data, program_.combined_params_len); } } else { self_alloc = true; origin_data = ReadFileToBuff(program_.para_path); if (config_.model_obfuscate_key != "") { auto obfuscator = pass::ModelObfuscatePass(config_.model_obfuscate_key); obfuscator.convert_data(origin_data, GetFileLength(program_.para_path)); } } PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "data == nullptr"); char *data = origin_data; for (const auto &block : program_desc_->Blocks()) { for (const auto &var_desc : block->Vars()) { auto var = program_.scope->Var(var_desc->Name()); if (var_desc->Persistable()) { if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") { var->template GetMutable(); continue; } DLOG << " init combine memory persistable: " << var_desc->Name(); auto tensor = var->template GetMutable(); LoadMemory(reinterpret_cast(&data), var_desc, tensor); } else { DLOG << " init combine memory no persistable: " << var_desc->Name(); varInputMemory(var_desc, var); } } } if (self_alloc) { delete[] origin_data; } LOG(kLOG_INFO) << "init combine memory finish"; } static void ClearNoPersistableTensorArray(const framework::ProgramDesc *program, framework::Scope *scope) { for (const auto &block : program->Blocks()) { for (const auto &var_desc : block->Vars()) { if (!var_desc->Persistable() && var_desc->Type() == VARTYPE_TYPE_STEP_LOD_TENSOR_ARRAY) { auto var = scope->Var(var_desc->Name()); auto array = var->template GetMutable(); array->resize(1); } } } } template void Executor::InitNoPersistableMemory(const Tensor &input_tensor) { if (input_tensor.dims().size() != 4) { return; } for (const auto &block : program_desc_->Blocks()) { for (const auto &var_desc : block->Vars()) { auto var = program_.scope->Var(var_desc->Name()); if (!var_desc->Persistable() && var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) { DLOG << "InitNoPersistableMemory var " << var_desc->Name(); auto tensor = var->template GetMutable(); if (tensor->IsInitialized() && tensor->dims().size() == 4) { // don't change user's input and avoid memory leaks if (feed_indices_.find(var_desc->Name()) != feed_indices_.end()) { break; } DDim tensor_dim = tensor->dims(); DDim new_dim = make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2], input_tensor.dims()[3]}); tensor->Resize(new_dim); tensor->template mutable_data_new(); DLOG << "var's tensor dims " << tensor_dim; DLOG << "var's tensor new dims " << new_dim; } else { DLOG << "var's tensor is not Initialized ???"; } } } } } template bool Executor::varInputMemory( const std::shared_ptr &var_desc, Variable *var) const { #ifdef PADDLE_MOBILE_FPGA framework::LoDTensor *tensor = var->template GetMutable(); #ifdef PADDLE_MOBILE_FPGA_V2 tensor->init(type_id().hash_code()); #else tensor->init(type_id().hash_code()); #endif return true; #endif auto type = var_desc->Type(); if (type == VARTYPE_TYPE_LOD_TENSOR) { auto data_type = var_desc->Tensor_desc().DataType(); framework::LoDTensor *tensor = var->template GetMutable(); } else if (type == VARTYPE_TYPE_STEP_SCOPES) { std::vector *step_scopes = var->template GetMutable>(); } else if (type == VARTYPE_TYPE_STEP_LOD_TENSOR_ARRAY) { framework::LoDTensorArray *tensor_array = var->template GetMutable(); } else { PADDLE_MOBILE_THROW_EXCEPTION("got unhandled var type `%d`", type); } return true; } template PMStatus Executor::Predict( const std::vector> &inputs) { for (const auto &input : inputs) { SetInput(input.second, input.first); } return this->Predict(); } template PMStatus Executor::Predict( const std::vector> &inputs) { for (const auto &input : inputs) { SetInput(input.second, input.first); } return this->Predict(); } template std::vector Executor::Predict(const std::vector &input, const std::vector &dims) { PADDLE_MOBILE_ENFORCE(feed_indices_.size() != 0, "We don't know which tensor should be assign, since no " "feed op found in this model"); PADDLE_MOBILE_ENFORCE(fetch_indices_.size() != 0, "We don't know which tensor should be fetch out, since " "no fetch op found in this model"); std::string input_name = feed_indices_.begin()->first; Tensor feed_tensor(input, make_ddim(dims)); SetInput(feed_tensor, input_name); std::vector output; if (this->Predict() == PMSuccess) { std::string output_name = fetch_indices_.begin()->first; const auto output_tensor = GetOutput(output_name); output.resize(output_tensor->numel()); memcpy(output.data(), output_tensor->template data(), output.size() * sizeof(T)); } return output; } template void Executor::SetInput(const Tensor &input, const std::string &var_name) { int index = 0; if (feed_indices_.find(var_name) != feed_indices_.end()) { index = feed_indices_.find(var_name)->second; } auto *feed_var = program_.scope->Var("feed"); framework::LoDTensor &target = feed_var->template GetMutable()->at(index); target.Resize(input.dims()); target.ShareDataWith(input); if (feed_indices_.size() == 1) { auto &dim = input.dims(); if (lod_mode_ && product(dim) < 0.9 * product(input_dim_last_)) { InitNoPersistableMemory(target); } input_dim_has_changed_ = input_dim_last_ != dim; input_dim_last_ = static_cast(dim); } } template void Executor::SetInput(const LoDTensor &input, const std::string &var_name) { int index = 0; if (feed_indices_.find(var_name) != feed_indices_.end()) { index = feed_indices_.find(var_name)->second; } auto *feed_var = program_.scope->Var("feed"); framework::LoDTensor &target = feed_var->template GetMutable()->at(index); target.Resize(input.dims()); target.ShareDataWith(input); target.set_lod(input.lod()); if (feed_indices_.size() == 1) { auto &dim = input.dims(); if (lod_mode_ && product(dim) < 0.9 * product(input_dim_last_)) { InitNoPersistableMemory(target); } input_dim_has_changed_ = input_dim_last_ != dim; input_dim_last_ = static_cast(dim); } } template std::shared_ptr Executor::GetOutput( const std::string &var_name) { const auto &iter = fetch_indices_.find(var_name); if (var_name == "fetch" || iter != fetch_indices_.end()) { int index = 0; if (iter != fetch_indices_.end()) { index = iter->second; } auto *fetch_var = program_.scope->Var("fetch"); framework::LoDTensor &target = fetch_var->template GetMutable()->at(index); return std::make_shared(target); } else { auto *fetch_var = program_.scope->Var(var_name); framework::LoDTensor *target = fetch_var->template GetMutable(); return std::make_shared(*target); } } #ifdef PADDLE_MOBILE_CL template const CLImage *Executor::GetOutputImage( const std::string &var_name) { auto var = program_.scope->FindVar(var_name); if (var->IsInitialized() && var->template IsType()) { const CLImage *cl_image = var->template Get(); return cl_image; } else { return nullptr; } } #endif template PMStatus Executor::Predict() { try { #if _OPENMP omp_set_num_threads(CPUContext::Context()->get_thread_num()); #endif // clear all no persistable tensor array since write_to_array // is always push back a new tensor in the array ClearNoPersistableTensorArray(program_desc_.get(), program_.scope.get()); #ifdef PADDLE_MOBILE_PROFILE std::vector profile(ops_of_block0_.size()); struct timespec ts; int op_index = 0; #endif for (int i = 0; i < ops_of_block0_.size(); ++i) { auto &op_handler = ops_of_block0_[i]; #ifdef PADDLE_MOBILE_PROFILE clock_gettime(CLOCK_MONOTONIC, &ts); profile[op_index].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec; #endif LOG(paddle_mobile::kLOG_INFO) << i << "th, " << "run op: " << op_handler->Type(); if (lod_mode_ && input_dim_has_changed_) { op_handler->InferShape(); } op_handler->Run(); #ifdef PADDLE_MOBILE_PROFILE clock_gettime(CLOCK_MONOTONIC, &ts); profile[op_index].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec; ++op_index; #endif } if (feed_indices_.size() == 1) { input_dim_has_changed_ = false; } #ifdef PADDLE_MOBILE_PROFILE PrintProfile(profile); #endif return PMSuccess; } catch (PaddleMobileException &e) { exception_msg_ = e.what(); return PMException; } catch (std::exception &e) { exception_msg_ = e.what(); return PMException; } } #ifdef PADDLE_MOBILE_PROFILE template void Executor::PrintProfile( const vector::ProfInfo> &profile) const { std::unordered_map _tp; for (int i = 0; i < profile.size(); i++) { const auto &pInfo = profile[i]; uint64_t timeCost = pInfo.runEnd - pInfo.runBegin; if (this->ops_of_block0_[i]->Type() == "conv2d" || this->ops_of_block0_[i]->Type() == "depthwise_conv2d") { auto inputs = this->ops_of_block0_[i]->Inputs(); auto *filter = GetVarValue("Filter", inputs, *(this->program_.scope)); int kernel_size = filter->dims()[2]; _tp[this->ops_of_block0_[i]->Type() + "_" + std::to_string(kernel_size)] += timeCost; } else { _tp[this->ops_of_block0_[i]->Type()] += timeCost; } } printf("====================[ profile ]======================\n"); typedef std::pair prof_t; std::vector _tv(_tp.begin(), _tp.end()); uint64_t _ptotal = 0; for (auto const &p : _tv) { _ptotal += p.second; } auto compf = [](const prof_t &a, const prof_t &b) { return a.second > b.second; }; std::sort(_tv.begin(), _tv.end(), compf); _tv.push_back(std::make_pair("total", _ptotal)); for (auto const &p : _tv) { printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(), static_cast(p.second), static_cast(p.second) / _ptotal * 100.0); } printf("====================[---------]======================\n"); } #endif template void Executor::FeedTensorData(const vector &v) { auto input_size = v.size(); auto *feed_var = program_.scope->Var("feed"); PADDLE_MOBILE_ENFORCE(input_size == feed_indices_.size(), "input data number not correct"); for (int i = 0; i < input_size; i++) { framework::LoDTensor &target = feed_var->template GetMutable()->at(i); target.ShareDataWith(v[input_size - i - 1]); } } template void Executor::GetTensorResults( std::vector *v) { auto *fetch_var = program_.scope->Var("fetch"); auto output_size = fetch_indices_.size(); for (int i = 0; i < output_size; i++) { framework::LoDTensor &target = fetch_var->template GetMutable()->at(i); v->push_back(&target); } } template std::string Executor::GetExceptionMsg() { return exception_msg_; } #ifdef PADDLE_MOBILE_FPGA template void Executor::InjectVariable(const Tensor &t, std::string var_name) { Variable *g_feed_value = program_.scope->Var(var_name); Tensor *feed_tensor = g_feed_value->template GetMutable(); feed_tensor->Resize(t.dims()); feed_tensor->ShareDataWith(t); } template void Executor::FeedData(const Tensor &t) { InjectVariable(t, "feed0"); } template void Executor::FeedData(const std::vector &v) { auto input_size = v.size(); int index = 0; // auto vars = program_.scope->VarContain("feed", &index); // PADDLE_MOBILE_ENFORCE(input_size == vars.size(), // "input data number not correct"); for (int i = 0; i < input_size; i++) { auto var = program_.scope->Var("feed", i + index); auto feed_tensor = var->template GetMutable(); feed_tensor->external_data = v[i]; } } template void Executor::GetResults(std::vector *v) { auto output_size = v->size(); PADDLE_MOBILE_ENFORCE(output_size > 0, "Empty output"); int index = 0; auto vars = program_.scope->VarContain("fetch", &index); PADDLE_MOBILE_ENFORCE(output_size == vars.size(), "output data number not correct"); for (int i = 0; i < output_size; i++) { auto var = program_.scope->Var("fetch", i + index); auto fetch_tensor = var->template GetMutable(); (*v)[i] = fetch_tensor->template data(); } } template framework::Tensor *Executor::GetTensorByName( const std::string &name) { auto var = program_.scope->Var(name); return var->template GetMutable(); } template std::shared_ptr Executor::FetchResult(int id) { auto &ops = ops_of_block0_; PADDLE_MOBILE_ENFORCE(id < (int)ops.size(), "Index out of range"); auto op = id < 0 ? ops[ops.size() - 1] : ops[id]; auto output_map = op->Outputs(); std::vector out_keys = op->GetOutKeys(); PADDLE_MOBILE_ENFORCE(!out_keys.empty(), "this op contains no output"); auto *output_tensor = GetVarValue(out_keys[0], output_map, *(program_.scope)); return std::make_shared(Tensor(*output_tensor)); } template void Executor::Predict_From_To(int start, int end) { auto &ops = ops_of_block0_; end = end < 0 ? static_cast(ops.size()) : end; PADDLE_MOBILE_ENFORCE(start >= 0 && start < end && end <= ops.size(), "start or end parameter is wrong"); #ifdef PADDLE_MOBILE_PROFILE std::vector profile(ops.size()); #endif for (int i = start; i < end; i++) { #ifdef PADDLE_MOBILE_PROFILE struct timespec ts; clock_gettime(CLOCK_MONOTONIC, &ts); profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec; #endif DLOG << "Running op: " << i << " " << ops[i]->Type(); ops[i]->Run(); #ifdef PADDLE_MOBILE_PROFILE clock_gettime(CLOCK_MONOTONIC, &ts); profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec; #endif } } template void Executor::Predict_From(int start) { Predict_From_To(start); } template void Executor::Predict_To(int end) { Predict_From_To(0, end); } #ifdef PADDLE_MOBILE_FPGA_V2 std::map LoadQuantValFromFile(std::string filename) { std::map quantValList; std::ifstream in; in.open(filename, std::ios::in); if (!in.is_open()) { // std::cout << "open File Failed." << std::endl; DLOG << "open File Failed."; exit(-1); } std::string line; while (getline(in, line)) { std::string splitStr = " : "; std::string::size_type pos; pos = line.find(splitStr); std::string subStr[2]; subStr[0] = line.substr(0, pos); subStr[1] = line.substr(pos + splitStr.size(), line.size()); quantValList.insert(std::make_pair(subStr[0], atof(subStr[1].c_str()))); } in.close(); return quantValList; } template void Executor::InitQuantMemory() { std::string quantValFilePath; if (program_.combined) { quantValFilePath = program_.para_path; quantValFilePath = quantValFilePath.substr(0, (quantValFilePath.length() - 6)); quantValFilePath = quantValFilePath + "scale"; } else { quantValFilePath = program_.model_path + "/scale"; } std::map quantValList = LoadQuantValFromFile(quantValFilePath); auto ops = ops_of_block0_; for (int id = 0; id < ops.size(); id++) { auto op = ops[id]; auto input_keys = op->GetInputKeys(); auto inputs = op->Inputs(); for (auto key = input_keys.begin(); key != input_keys.end(); key++) { auto inputs_vars = inputs[*key]; int count = inputs_vars.size(); for (int i = 0; i < count; i++) { if (inputs_vars[i] != "feed") { auto tensor = GetTensorByName(inputs_vars[i]); tensor->scale[0] = quantValList[inputs_vars[i]]; DLOG << "input variance name : " << inputs_vars[i] << ", scale value : " << tensor->scale[0]; } } } auto output_keys = op->GetOutKeys(); auto outputs = op->Outputs(); for (auto key = output_keys.begin(); key != output_keys.end(); key++) { auto outputs_vars = outputs[*key]; int count = outputs_vars.size(); for (int i = 0; i < count; i++) { if (outputs_vars[i] != "fetch") { auto tensor = GetTensorByName(outputs_vars[i]); tensor->scale[0] = quantValList[outputs_vars[i]]; DLOG << "output variance name : " << outputs_vars[i] << ", scale value : " << tensor->scale[0]; } } } } } #endif #endif #ifdef PADDLE_MOBILE_CL template <> void Executor::InitNoPersistableMemory( const Tensor &input_tensor) { DLOG << "CL InitNoPersistableMemory "; for (const auto &block : program_desc_->Blocks()) { for (const auto &var_desc : block->Vars()) { auto var = program_.scope->Var(var_desc->Name()); if (var_desc->Persistable()) { if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") { var->template GetMutable(); continue; } } else { if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) { auto cl_image = var->template GetMutable(); cl_context context = program_.scope->GetCLScpoe()->Context(); cl_command_queue command_queue = program_.scope->GetCLScpoe()->CommandQueue(); DDim tensor_dim = cl_image->dims(); DDim new_dim = make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2], input_tensor.dims()[3]}); cl_image->Resize(new_dim); cl_image->InitEmptyImage(context, command_queue, new_dim); } } } } std::shared_ptr output = GetOutput("fetch"); output->Resize(input_tensor.dims()); output->mutable_data(); } template <> void Executor::SetInput(const Tensor &input, const std::string &var_name) { int index = 0; if (feed_indices_.find(var_name) != feed_indices_.end()) { index = feed_indices_.find(var_name)->second; } auto *feed_var = program_.scope->Var("feed"); framework::LoDTensor *input_tensor = &(feed_var->template GetMutable()->at(index)); DLOG << "config_.load_when_predict " << config_.load_when_predict; DLOG << "target_tensor->IsInitialized() " << input_tensor->IsInitialized(); DLOG << "target_tensor->dims() " << input_tensor->dims(); DLOG << "input.dims() " << input.dims(); DLOG << "input_dim_last_ " << input_dim_last_; if (config_.load_when_predict) { if (input_dim_last_ != input.dims()) { DLOG << "SetInput ---- > resize1"; input_tensor->Resize(input.dims()); input_tensor->mutable_data(); if (config_.memory_optimization_level == NoMemoryOptimization) { InitNoPersistableMemory(*input_tensor); } else { pass::MemoryOptPassCl()(program_desc_.get(), program_.scope.get(), config_.memory_optimization_level, input.dims()); } } } else { DLOG << "SetInput ---- > resize2"; input_tensor->Resize(input.dims()); DLOG << "SetInput ---- > ShareDataWith"; } input_tensor->ShareDataWith(input); if (feed_indices_.size() == 1) { input_dim_has_changed_ = input_dim_last_ != input.dims(); } auto &dim = input.dims(); input_dim_last_ = static_cast(dim); } template void Executor::LoadMemory(const VarDesc var_desc, float *tensorInput, char **data) {} template <> void Executor::LoadMemory(const VarDesc var_desc, float *tensorInput, char **data) { // 1. version uint32_t version = *reinterpret_cast(*data); (*data) += sizeof(uint32_t); // 2 Lod information uint64_t *lod_level_ptr = new uint64_t(); memcpy(lod_level_ptr, (*data), sizeof(uint64_t)); uint64_t lod_level = *lod_level_ptr; delete lod_level_ptr; (*data) += sizeof(uint64_t); for (uint64_t i = 0; i < lod_level; ++i) { uint64_t size = *reinterpret_cast(*data); (*data) += sizeof(uint64_t); std::vector tmp(size / sizeof(size_t)); for (int k = 0; k < tmp.size(); ++k) { tmp[k] = *reinterpret_cast(*data); (*data) += sizeof(size_t); } } // 3. tensor version uint32_t tensor_version = *reinterpret_cast(*data); (*data) += sizeof(uint32_t); // 4. tensor desc int32_t size = *reinterpret_cast(*data); (*data) += sizeof(int32_t); std::unique_ptr buf(new char[size]); for (int m = 0; m < size; ++m) { buf.get()[m] = (*data)[m]; } (*data) += (sizeof(char) * size); const TensorDesc &desc = var_desc.Tensor_desc(); int memory_size = 1; for (auto l : desc.Dims()) { memory_size *= l; } void *memory = nullptr; int type_size = 4; memory = tensorInput; LoadMemInternal(reinterpret_cast(data), reinterpret_cast(memory), memory_size, program_.quantification, program_.quantification_fold); } template <> void Executor::InitMemory() { for (const auto &block : program_desc_->Blocks()) { for (const auto &var_desc : block->Vars()) { auto var = program_.scope->Var(var_desc->Name()); if (var_desc->Persistable()) { CLImage *cl_image = nullptr; if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") { var->template GetMutable(); continue; } else { cl_image = var->template GetMutable(); } char *origin_data = ReadFileToBuff(program_.model_path + "/" + var_desc->Name()); char *data = origin_data; cl_context context = program_.scope->GetCLScpoe()->Context(); const TensorDesc &desc = var_desc->Tensor_desc(); int numel = 1; for (auto l : desc.Dims()) { numel *= l; } DLOG << var_desc->Name(); float *tensorInput = static_cast( paddle_mobile::memory::Alloc(sizeof(float) * numel)); LoadMemory(*var_desc, tensorInput, &data); DDim ddim = make_ddim(desc.Dims()); // has not init cl_image->SetTensorData(tensorInput, ddim); delete origin_data; paddle_mobile::memory::Free(tensorInput); } else { if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) { auto cl_image = var->template GetMutable(); cl_context context = program_.scope->GetCLScpoe()->Context(); cl_command_queue command_queue = program_.scope->GetCLScpoe()->CommandQueue(); const TensorDesc &desc = var_desc->Tensor_desc(); // DDim ddim = make_ddim(desc.Dims()); DDim ddim = cl_image->dims(); DLOG << var_desc->Name(); cl_image->InitEmptyImage(context, command_queue, ddim); } } } } } template <> void Executor::InitCombineMemory() { DLOG << "CL InitCombineMemory---- " << "config_.load_when_predict: " << config_.load_when_predict; char *origin_data = nullptr; bool self_alloc = false; if (program_.combined_params_buf && program_.combined_params_len) { LOG(kLOG_INFO) << "use outter memory"; origin_data = reinterpret_cast(program_.combined_params_buf); if (config_.model_obfuscate_key != "") { auto obfuscator = pass::ModelObfuscatePass(config_.model_obfuscate_key); obfuscator.convert_data(origin_data, program_.combined_params_len); } } else { LOG(kLOG_INFO) << " begin init combine memory"; self_alloc = true; origin_data = ReadFileToBuff(program_.para_path); if (config_.model_obfuscate_key != "") { auto obfuscator = pass::ModelObfuscatePass(config_.model_obfuscate_key); obfuscator.convert_data(origin_data, GetFileLength(program_.para_path)); } } PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "origin_data==nullptr!!!"); float *data = reinterpret_cast(origin_data); for (const auto &block : program_desc_->Blocks()) { for (const auto &var_desc : block->Vars()) { auto var = program_.scope->Var(var_desc->Name()); if (var_desc->Persistable()) { CLImage *cl_image = nullptr; if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") { var->template GetMutable(); continue; } else { cl_image = var->template GetMutable(); } cl_context context = program_.scope->GetCLScpoe()->Context(); const TensorDesc &desc = var_desc->Tensor_desc(); DDim ddim = make_ddim(desc.Dims()); int numel = 1; for (int i = 0; i < ddim.size(); i++) { numel = numel * ddim[i]; } float *tensorInput = static_cast( paddle_mobile::memory::Alloc(sizeof(float) * numel)); LoadMemory(*var_desc, tensorInput, &origin_data); // has not init cl_image->SetTensorData(tensorInput, ddim); paddle_mobile::memory::Free(tensorInput); } else { auto cl_image = var->template GetMutable(); cl_context context = program_.scope->GetCLScpoe()->Context(); cl_command_queue command_queue = program_.scope->GetCLScpoe()->CommandQueue(); const TensorDesc &desc = var_desc->Tensor_desc(); DDim ddim = cl_image->dims(); bool shouldResize = true; if (ddim.size() > 4) { for (int i = 0; i < ddim.size() - 4; ++i) { if (ddim[i] != 0 && ddim[i] != 1) { shouldResize = false; break; } } if (shouldResize) { std::vector temp_intput_dims; temp_intput_dims.reserve(static_cast(4)); for (int i = ddim.size() - 4; i < ddim.size(); ++i) { temp_intput_dims.push_back(ddim[i]); } ddim = framework::make_ddim(temp_intput_dims); } } // DDim ddim = make_ddim(desc.Dims()); cl_image->InitEmptyImage(context, command_queue, ddim); } } } if (self_alloc) { delete data; } LOG(kLOG_INFO) << " end init combine memory "; } #endif template class Executor; template class Executor; template class Executor; } // namespace framework } // namespace paddle_mobile