// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/mlu/bridges/graph.h" #include "lite/kernels/mlu/bridges/utility.h" #include "lite/kernels/npu/bridges/registry.h" namespace paddle { namespace lite { namespace subgraph { namespace mlu { std::vector axis_to_nhwc(const std::vector& axis) { std::vector new_axis(axis.size()); std::vector nhwc2nchw_axis(axis.size()); nhwc2nchw_axis[0] = 0; if (axis.size() > 1) nhwc2nchw_axis[1] = axis.size() - 1; for (size_t i = 2; i < axis.size(); ++i) { nhwc2nchw_axis[i] = i - 1; } std::vector nchw2nhwc_axis(axis.size()); nchw2nhwc_axis[0] = 0; for (size_t i = 1; i < axis.size() - 1; ++i) { nchw2nhwc_axis[i] = i + 1; } if (axis.size() > 1) nchw2nhwc_axis[axis.size() - 1] = 1; for (size_t i = 0; i < new_axis.size(); ++i) { new_axis[i] = nhwc2nchw_axis[axis[nchw2nhwc_axis[i]]]; } return new_axis; } int TransposeConverter(void* ctx, OpLite* op, KernelBase* kernel) { CHECK(ctx != nullptr); CHECK(op != nullptr); auto graph = static_cast(ctx); auto op_info = op->op_info(); auto op_type = op_info->Type(); auto scope = op->scope(); VLOG(3) << "[MLU] Converting " + op_type + "..."; // Get input vars and op attributes auto x_var_name = op_info->Input("X").front(); auto x = scope->FindVar(x_var_name)->GetMutable(); auto x_dims = x->dims().Vectorize(); auto out_var_name = op_info->Output("Out").front(); auto output = scope->FindVar(out_var_name)->GetMutable(); auto output_dims = output->dims().Vectorize(); auto axis = op_info->GetAttr>("axis"); std::vector axis_nhwc = axis_to_nhwc(axis); auto output_tensor = graph->AddNode( out_var_name, output_dims, CNML_TENSOR, CNML_NCHW, graph->FPType()); CHECK(graph->HasNode(x_var_name)); auto input_tensor = graph->GetNode(x_var_name); cnmlBaseOp_t transpose_op{nullptr}; cnmlNdTransposeOpParam_t transpose_param{nullptr}; CNML_CALL(cnmlCreateNdTransposeOpParam( &transpose_param, axis_nhwc.data(), axis_nhwc.size())); // Use cnmlCreatexxxOpForward to create op. CNML_CALL(cnmlCreateNdTransposeProOp(&transpose_op, input_tensor->mlu_tensor(), output_tensor->mlu_tensor(), transpose_param)); graph->FuseOp(transpose_op); CNML_CALL(cnmlDestroyBaseOp(&transpose_op)); return SUCCESS; } } // namespace mlu } // namespace subgraph } // namespace lite } // namespace paddle REGISTER_SUBGRAPH_BRIDGE(transpose, kMLU, paddle::lite::subgraph::mlu::TransposeConverter); REGISTER_SUBGRAPH_BRIDGE(transpose2, kMLU, paddle::lite::subgraph::mlu::TransposeConverter);