// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/arm/lookup_table_dequant_compute.h" #include #include #include "lite/api/paddle_place.h" #include "lite/backends/arm/math/funcs.h" #include "lite/core/op_registry.h" #include "lite/core/tensor.h" #include "lite/core/type_system.h" namespace paddle { namespace lite { namespace kernels { namespace arm { void dequant(const unsigned char *in, float *out, float min, float max, int emb_size, int pow_2_bits) { float scale = (max - min) / pow_2_bits; for (int i = 0; i < emb_size; ++i) { float x = scale * static_cast(in[i]) + min; out[i] = x; } } void LookupTableDequantCompute::Run() { auto ¶m = this->Param(); // inputs auto w = param.W; auto ids = param.Ids; // outputs auto out = param.Out; auto table_dim = w->dims(); int64_t ids_numel = ids->numel(); auto ids_data = ids->data(); int64_t row_number = table_dim[0]; int64_t quant_number = table_dim[1]; int64_t row_width = (quant_number - 2) * 4; auto table_data = w->data(); auto dout = out->mutable_data(); int pow_2_bits = static_cast(pow(2, 8)); for (int64_t i = 0; i < ids_numel; ++i) { int ids_int = ids_data[i]; if (param.padding_idx != -1 && ids_data[i] == param.padding_idx) { memset(dout + i * row_width, 0, row_width * sizeof(float)); } else { CHECK_LT(ids_data[i], row_number) << "look uptable ids[i] < row_number check failed"; CHECK_GE(ids_data[i], 0) << "lookuptable ids[i] >= 0 check failed"; float min = *(table_data + ids_data[i] * quant_number); float max = *(table_data + ids_data[i] * quant_number + 1); int offset = ids_data[i] * quant_number + 2; const unsigned char *tensor_buf = reinterpret_cast(table_data + offset); dequant( tensor_buf, dout + i * row_width, min, max, row_width, pow_2_bits); // memcpy(dout + i * row_width, // table_data + ids_int * row_width, // row_width * sizeof(float)); } } *(out->mutable_lod()) = ids->lod(); } } // namespace arm } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(lookup_table_dequant, kARM, kAny, kNCHW, paddle::lite::kernels::arm::LookupTableDequantCompute, def) .BindInput("W", {LiteType::GetTensorTy(TARGET(kARM))}) .BindInput("Ids", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt64))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))}) .Finalize();