// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include "paddle_api.h" // NOLINT using namespace paddle::lite_api; // NOLINT int64_t ShapeProduction(const shape_t& shape) { int64_t res = 1; for (auto i : shape) res *= i; return res; } void RunModel(std::string model_dir) { // 1. Create CxxConfig CxxConfig config; config.set_model_file(model_dir + "/__model__"); config.set_param_file(model_dir + "/__params__"); config.set_valid_places({ Place{TARGET(kCUDA), PRECISION(kFloat)}, }); // 2. Create PaddlePredictor by CxxConfig std::shared_ptr predictor = CreatePaddlePredictor(config); // 3. Prepare input data int num = 1; int channels = 3; int height = 608; int width = 608; std::unique_ptr input_tensor(std::move(predictor->GetInput(0))); input_tensor->Resize({num, channels, height, width}); // fake input data std::vector data(num * channels * height * width, 0); for (int i = 0; i < ShapeProduction(input_tensor->shape()); ++i) { data[i] = i % 10 * 0.1; } input_tensor->CopyFromCpu(data.data()); std::unique_ptr size_tensor(std::move(predictor->GetInput(1))); size_tensor->Resize({1, 2}); std::vector size_data{608, 608}; size_tensor->CopyFromCpu(size_data.data()); // 4. Run predictor predictor->Run(); // 5. Get output std::unique_ptr output_tensor( std::move(predictor->GetOutput(0))); std::vector out_cpu(ShapeProduction(output_tensor->shape()), 0); std::cout << "output size is " << ShapeProduction(output_tensor->shape()) << std::endl; output_tensor->CopyToCpu(out_cpu.data()); for (int i = 0; i < ShapeProduction(output_tensor->shape()); i += 100) { std::cout << "Output[" << i << "]: " << out_cpu[i] << std::endl; } } int main(int argc, char** argv) { if (argc < 2) { std::cerr << "[ERROR] usage: ./" << argv[0] << " model_dir\n"; exit(1); } std::string model_dir = argv[1]; RunModel(model_dir); return 0; }