// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include "lite/api/paddle_place.h" #include "lite/backends/arm/math/funcs.h" #include "lite/backends/arm/math/gru_utils.h" #include "lite/backends/arm/math/sequence2batch.h" #include "lite/backends/arm/math/sgemm.h" #include "lite/core/op_registry.h" #include "lite/core/tensor.h" #include "lite/core/type_system.h" #include "lite/kernels/fpga/gru_compute.h" #include "lite/backends/fpga/KD/debugger.hpp" #include "lite/backends/fpga/KD/pes/gru_util.hpp" namespace paddle { namespace lite { namespace kernels { namespace fpga { using float16 = zynqmp::float16; inline lite_api::ActivationType get_gru_act_type(const std::string& type) { if (type == "sigmoid") { return lite_api::ActivationType::kSigmoid; } else if (type == "tanh") { return lite_api::ActivationType::kTanh; } else if (type == "relu") { return lite_api::ActivationType::kRelu; } else if (type == "identity") { return lite_api::ActivationType::kIndentity; } else { LOG(FATAL) << "unsupported activation type: " << type; } } void GRUCompute::PrepareForRun() { auto& param = this->Param(); param.hidden->mutable_data(); auto input = param.input; auto h0 = param.h0; auto weight = param.weight; auto bias = param.bias; zynqmp::GRUParam& gru_param = pe_.param(); gru_param.input = input->ZynqTensor(); if (h0 != nullptr) { gru_param.h0 = h0->ZynqTensor(); } gru_param.weight = weight->ZynqTensor(); gru_param.bias = bias->ZynqTensor(); gru_param.batch_gate = param.batch_gate->ZynqTensor(); gru_param.batch_reset_hidden_prev = param.batch_reset_hidden_prev->ZynqTensor(); gru_param.batch_hidden = param.batch_hidden->ZynqTensor(); gru_param.hidden = param.hidden->ZynqTensor(); gru_param.gate_activation = param.gate_activation; gru_param.activation = param.activation; pe_.init(); pe_.apply(); } void GRUCompute::Run() { auto& param = this->Param(); param.hidden->mutable_data(); // inputs auto input = param.input; auto h0 = param.h0; auto weight = param.weight; auto bias = param.bias; // outputs auto batch_gate = param.batch_gate; auto batch_reset_hidden_prev = param.batch_reset_hidden_prev; auto batch_hidden = param.batch_hidden; auto hidden = param.hidden; auto hidden_dims = hidden->dims(); int frame_size = hidden_dims[1]; auto batch_size = input->dims()[0]; const float* weight_data = weight->data(); float* batch_gate_data = batch_gate->mutable_data(); lite::arm::math::LoDTensor2BatchFunctor to_batch; to_batch(*input, batch_gate, true, param.is_reverse); // 1. if (bias) { auto bias_data = bias->data(); // 2. lite::arm::math::gru_add_with_bias(batch_gate_data, bias_data, batch_gate_data, batch_size, frame_size * 3); } zynqmp::GRUTensors gru_tensors; lite::arm::math::GRUMetaValue gru_value; gru_value.gate_weight = const_cast(weight_data); gru_value.state_weight = const_cast(weight_data + 2 * frame_size * frame_size); Tensor ordered_h0; std::vector order(batch_gate->lod()[2]); if (h0) { // Since the batch computing for GRU reorders the input sequences // according to their length. The initialized cell state also needs // to reorder. // lite::arm::math::ReorderInitState(*h0, order, &ordered_h0, true); // //3. gru_value.prev_out_value = ordered_h0.mutable_data(); gru_tensors.pre_output = ordered_h0.ZynqTensor(); } else { gru_value.prev_out_value = nullptr; gru_tensors.pre_output = nullptr; } auto batch_starts = batch_gate->lod()[0]; size_t seq_len = batch_starts.size() - 1; auto active_node = get_gru_act_type(param.activation); auto active_gate = get_gru_act_type(param.gate_activation); save_float(gru_value.gate_weight, "_gate_weight.txt", weight->numel()); batch_gate->ZynqTensor()->saveToFile("batch_gate.txt"); zynqmp::Tensor float_input; zynqmp::Tensor hidden_out; for (size_t n = 0; n < seq_len; n++) { int bstart = static_cast(batch_starts[n]); int bend = static_cast(batch_starts[n + 1]); int cur_batch_size = bend - bstart; gru_value.output_value = batch_hidden->mutable_data() + bstart * batch_hidden->dims()[1]; gru_value.gate_value = batch_gate->mutable_data() + bstart * batch_gate->dims()[1]; gru_value.reset_output_value = batch_reset_hidden_prev->mutable_data() + bstart * batch_reset_hidden_prev->dims()[1]; zynqmp::Shape float_input_shape(zynqmp::NC, {cur_batch_size, batch_gate->dims()[1]}); float* float_data = float_input.mutableData(zynqmp::FP32, float_input_shape); memcpy(float_data, gru_value.gate_value, batch_gate->dims()[1] * sizeof(float)); float_input.flush(); float* hidden_data = hidden_out.mutableData(zynqmp::FP32, float_input_shape); gru_tensors.gate = &float_input; gru_tensors.output = &hidden_out; pe_.GRUCOmpute(gru_tensors, frame_size, cur_batch_size, active_node, active_gate, param.origin_mode); // TODO(chonwhite): copy data back to original tensor; gru_tensors.pre_output = gru_tensors.output; } lite::arm::math::Batch2LoDTensorFunctor to_seq; // 5. *(batch_hidden->mutable_lod()) = batch_gate->lod(); batch_hidden->mutable_data(); to_seq(*batch_hidden, hidden); save_tensor(const_cast(input), "_input.txt"); save_tensor(hidden, "_gru.txt"); exit(-1); } } // namespace fpga } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL( gru, kFPGA, kFP16, kNHWC, paddle::lite::kernels::fpga::GRUCompute, def) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kARM))}) .BindInput("H0", {LiteType::GetTensorTy(TARGET(kARM))}) .BindInput("Weight", {LiteType::GetTensorTy(TARGET(kARM))}) .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM))}) .BindOutput("BatchGate", {LiteType::GetTensorTy(TARGET(kARM))}) .BindOutput("BatchResetHiddenPrev", {LiteType::GetTensorTy(TARGET(kARM))}) .BindOutput("BatchHidden", {LiteType::GetTensorTy(TARGET(kARM))}) .BindOutput("Hidden", {LiteType::GetTensorTy(TARGET(kARM))}) .Finalize();