// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include "lite/core/op_registry.h" #include "lite/core/tensor.h" #include "lite/core/type_system.h" #include "lite/kernels/fpga/transpose_compute.h" namespace paddle { namespace lite { namespace kernels { namespace fpga { using float16 = zynqmp::float16; void transposeCompute(operators::TransposeParam param) { // copy from; const auto* input_x = param.x; const auto input_x_dims = input_x->dims(); input_x->ZynqTensor()->invalidate(); input_x->ZynqTensor()->unalignImage(); Tensor float_input; float_input.Resize(input_x_dims); float_input.mutable_data(); float_input.ZynqTensor()->copyFrom(input_x->ZynqTensor()); // const auto* input_x_data = input_x->data(); const auto* input_x_data = float_input.data(); // auto& param = this->Param(); auto* out = param.output; const auto axis = param.axis; auto* out_data = out->mutable_data(); size_t ndim = axis.size(); std::vector xdim(ndim); std::vector xstride(ndim); std::vector xout(ndim); for (int i = 0; i < ndim; i++) { int j = ndim - 1 - i; xdim[j] = input_x_dims[axis[i]]; xstride[j] = 1; for (int k = axis[i] + 1; k < ndim; k++) { xstride[j] *= input_x_dims[k]; } xout[j] = xstride[j] * xdim[j]; } auto numel = input_x->numel(); size_t pind = 0; std::vector ind(ndim); for (int i = 0; i < numel; i++) { out_data[i] = input_x_data[pind]; ind[0]++; pind += xstride[0]; for (int j = 0; j < ndim - 1; j++) { if (ind[j] == xdim[j]) { ind[j + 1]++; ind[j] = 0; pind += xstride[j + 1]; pind -= xout[j]; } else { break; } } } } // Transpose void TransposeCompute::Run() { auto& param = this->Param(); // param.output->mutable_data(); } // Transpose2 void Transpose2Compute::Run() { auto& param = this->Param(); param.output->mutable_data(); param.x->ZynqTensor()->invalidate(); param.x->ZynqTensor()->unalignImage(); if (param.x->dims().size() != 4) { transposeCompute(param); // auto out = param.Out(); // auto out_data = out->data(); // int num = input_x_dims[1]; // int channel = input_x_dims[2]; // int index = 0; // for (int n = 0; n < num; n++) { // for (int c = 0; c < channel; c++) { // out_data[c * num + n] = input_x_data[n * channel + c]; // index++; // } // } // param.output->ZynqTensor()->copyFrom(param.x->ZynqTensor()); } else { param.x->ZynqTensor()->saveToFile("tx", true); param.output->ZynqTensor()->copyFrom(param.x->ZynqTensor()); param.output->ZynqTensor()->saveToFile("to", true); } } } // namespace fpga } // namespace kernels } // namespace lite } // namespace paddle // Transpose REGISTER_LITE_KERNEL(transpose, kFPGA, kFP16, kNHWC, paddle::lite::kernels::fpga::TransposeCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kFP16), DATALAYOUT(kNHWC))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kFP16), DATALAYOUT(kNHWC))}) .Finalize(); // Transpose2 REGISTER_LITE_KERNEL(transpose2, kFPGA, kFP16, kNHWC, paddle::lite::kernels::fpga::Transpose2Compute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kFP16), DATALAYOUT(kNHWC))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))}) .BindOutput("XShape", {LiteType::GetTensorTy(TARGET(kARM))}) .Finalize();