// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/fpga/mul_compute.h" #include #include "lite/core/op_registry.h" #include "lite/core/type_system.h" #include "lite/backends/fpga/KD/debugger.hpp" namespace paddle { namespace lite { namespace kernels { namespace fpga { using float16 = zynqmp::float16; void MulCompute::PrepareForRun() { auto& param = this->Param(); // ==================================================== zynqmp::FullyConnectedParam& fc_param = pe_.param(); param.output->mutable_data(); fc_param.input = param.x->ZynqTensor(); fc_param.output = param.output->ZynqTensor(); fc_param.filter = param.y->ZynqTensor(); fc_param.bias = &bias_; int channel = fc_param.filter->shape().channel(); zynqmp::Shape bias_shape(zynqmp::N, {channel}); float* bias_data = fc_param.bias->mutableData(zynqmp::FP32, bias_shape); memset(bias_data, 0, channel * sizeof(float)); bias_.flush(); pe_.init(); pe_.apply(); } void mul(MulCompute* k) { auto& param = k->Param(); int num = param.x->dims()[0]; int channel = param.x->dims()[1]; int fn = param.y->dims()[1]; float16* out_data = param.output->mutable_data(); int g_index = 0; for (int n = 0; n < 1; n++) { for (int on = 0; on < fn; on++) { float sum = 0; int si = 0; for (int c = 0; c < channel; c++) { float value = zynqmp::half_to_float(param.x->data()[si]); int index = c * fn + on; float weight = param.y->data()[index]; sum += value * weight; si++; } out_data[g_index] = zynqmp::float_to_half(sum); g_index++; } } } void MulCompute::Run() { pe_.dispatch(); #ifdef FPGA_PRINT_TENSOR zynqmp::FullyConnectedParam& fc_param = pe_.param(); Debugger::get_instance().registerOutput("mul", fc_param.output); #endif } } // namespace fpga } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL( mul, kFPGA, kFP16, kNHWC, paddle::lite::kernels::fpga::MulCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kFP16), DATALAYOUT(kNHWC))}) .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kFP16), DATALAYOUT(kNHWC))}) .Finalize();