// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include "opencv2/core.hpp" #include "opencv2/imgcodecs.hpp" #include "opencv2/imgproc.hpp" #include "paddle_api.h" // NOLINT using namespace paddle::lite_api; // NOLINT void load_labels(std::string path, std::vector* labels) { FILE* fp = fopen(path.c_str(), "r"); if (fp == nullptr) { printf("load label file failed \n"); return; } while (!feof(fp)) { char str[1024]; fgets(str, 1024, fp); std::string str_s(str); if (str_s.length() > 0) { for (int i = 0; i < str_s.length(); i++) { if (str_s[i] == ' ') { std::string strr = str_s.substr(i, str_s.length() - i - 1); labels->push_back(strr); i = str_s.length(); } } } } fclose(fp); } void print_topk(const float* scores, const int size, const int topk, const std::vector& labels) { std::vector> vec; vec.resize(size); for (int i = 0; i < size; i++) { vec[i] = std::make_pair(scores[i], i); } std::partial_sort(vec.begin(), vec.begin() + topk, vec.end(), std::greater>()); // print topk and score for (int i = 0; i < topk; i++) { float score = vec[i].first; int index = vec[i].second; printf("i: %d, index: %d, name: %s, score: %f \n", i, index, labels[index].c_str(), score); } } // fill tensor with mean and scale and trans layout: nhwc -> nchw, neon speed up void neon_mean_scale( const float* din, float* dout, int size, float* mean, float* scale) { float32x4_t vmean0 = vdupq_n_f32(mean[0]); float32x4_t vmean1 = vdupq_n_f32(mean[1]); float32x4_t vmean2 = vdupq_n_f32(mean[2]); float32x4_t vscale0 = vdupq_n_f32(1.f / scale[0]); float32x4_t vscale1 = vdupq_n_f32(1.f / scale[1]); float32x4_t vscale2 = vdupq_n_f32(1.f / scale[2]); float* dout_c0 = dout; float* dout_c1 = dout + size; float* dout_c2 = dout + size * 2; int i = 0; for (; i < size - 3; i += 4) { float32x4x3_t vin3 = vld3q_f32(din); float32x4_t vsub0 = vsubq_f32(vin3.val[0], vmean0); float32x4_t vsub1 = vsubq_f32(vin3.val[1], vmean1); float32x4_t vsub2 = vsubq_f32(vin3.val[2], vmean2); float32x4_t vs0 = vmulq_f32(vsub0, vscale0); float32x4_t vs1 = vmulq_f32(vsub1, vscale1); float32x4_t vs2 = vmulq_f32(vsub2, vscale2); vst1q_f32(dout_c0, vs0); vst1q_f32(dout_c1, vs1); vst1q_f32(dout_c2, vs2); din += 12; dout_c0 += 4; dout_c1 += 4; dout_c2 += 4; } for (; i < size; i++) { *(dout_c0++) = (*(din++) - mean[0]) * scale[0]; *(dout_c0++) = (*(din++) - mean[1]) * scale[1]; *(dout_c0++) = (*(din++) - mean[2]) * scale[2]; } } void pre_process(const cv::Mat& img, int width, int height, Tensor dstTensor, float* means, float* scales) { cv::Mat rgb_img; // cv::cvtColor(img, rgb_img, cv::COLOR_BGR2RGB); cv::resize(rgb_img, rgb_img, cv::Size(width, height), 0.f, 0.f); cv::Mat imgf; rgb_img.convertTo(imgf, CV_32FC3, 1 / 255.f); const float* dimg = reinterpret_cast(imgf.data); float* data = dstTensor.mutable_data(); neon_mean_scale(dimg, data, width * height, means, scales); } void RunModel(std::string model_dir, std::string img_path, const std::vector& labels, const int topk, int width, int height) { // 1. Set MobileConfig MobileConfig config; config.set_model_dir(model_dir); // 2. Create PaddlePredictor by MobileConfig std::shared_ptr predictor = CreatePaddlePredictor(config); // 3. Prepare input data from image std::unique_ptr input_tensor(std::move(predictor->GetInput(0))); input_tensor->Resize({1, 3, height, width}); auto* data = input_tensor->mutable_data(); // read img and pre-process cv::Mat img = imread(img_path, cv::IMREAD_COLOR); // pre_process(img, width, height, data); float means[3] = {0.485f, 0.456f, 0.406f}; float scales[3] = {0.229f, 0.224f, 0.225f}; pre_process(img, width, height, *input_tensor, means, scales); // 4. Run predictor predictor->Run(); // 5. Get output and post process std::unique_ptr output_tensor( std::move(predictor->GetOutput(0))); auto* outptr = output_tensor->data(); auto shape_out = output_tensor->shape(); int64_t cnt = 1; for (auto& i : shape_out) { cnt *= i; } print_topk(outptr, cnt, topk, labels); } int main(int argc, char** argv) { if (argc < 4) { std::cerr << "[ERROR] usage: " << argv[0] << " model_dir image_path label_file\n"; exit(1); } printf("parameter: model_dir, image_path and label_file are necessary \n"); printf("parameter: topk, input_width, input_height, are optional \n"); std::string model_dir = argv[1]; std::string img_path = argv[2]; std::string label_file = argv[3]; std::vector labels; load_labels(label_file, &labels); int topk = 5; int height = 224; int width = 224; if (argc > 4) { topk = atoi(argv[4]); } if (argc > 6) { width = atoi(argv[5]); height = atoi(argv[6]); } RunModel(model_dir, img_path, labels, topk, width, height); return 0; }