// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/rknpu/subgraph_compute.h" #include #include #include #include "lite/backends/rknpu/device.h" #include "lite/core/op_registry.h" #include "lite/kernels/rknpu/bridges/graph.h" #include "lite/kernels/rknpu/bridges/paddle_use_bridges.h" #include "lite/kernels/rknpu/bridges/utility.h" #include "rknpu/rknpu_pub.h" // NOLINT namespace paddle { namespace lite { namespace kernels { namespace rknpu { bool SubgraphEngine::BuildDeviceProgram() { LOG(INFO) << "[RKNPU]:BuildDeviceProgram"; int status = 0; // Convert all of ops and their input vars and weights and added into the NPU // RKNPU IR graph subgraph::rknpu::Graph graph; const auto& bridges = subgraph::Registry::Instance(); if (!origin_program_) { BuildOriginProgram(); } const auto& insts = origin_program_->instructions(kRootBlockIdx); for (auto& inst : insts) { auto op = const_cast(inst.op()); CHECK(op); op->CheckShape(); op->InferShape(); std::string op_type = op->op_info()->Type(); if (!bridges.Exists(op_type, TARGET(kRKNPU))) { return false; } auto kernel = inst.kernel(); status |= bridges.Select(op_type, TARGET(kRKNPU))( reinterpret_cast(&graph), op, const_cast(kernel)); if (subgraph::CHECK_FAILED(status)) { return false; } } // Collect the valid input and output nodes in the RKNPU IR graph and update // the input and output names device_itensors_.clear(); device_otensors_.clear(); for (size_t i = 0; i < input_names_.size(); i++) { CHECK(graph.Has(input_names_[i])) << "[RKNPU] Failed to find input node " << input_names_[i]; auto node = graph.Get(input_names_[i]); auto precision = node->precision(); auto layout = node->layout(); LOG(INFO) << "[RKNPU] Inputs[" << i << "] name: " << input_names_[i] << " precision: " << PrecisionToStr(precision) << " layout: " << DataLayoutToStr(layout); device_itensors_.push_back(node->data()); } for (size_t i = 0; i < output_names_.size(); i++) { CHECK(graph.Has(output_names_[i])) << "[RKNPU] Failed to find output node " << output_names_[i]; auto node = graph.Get(output_names_[i]); auto precision = node->precision(); auto layout = node->layout(); LOG(INFO) << "[RKNPU] Outputs[" << i << "] name: " << output_names_[i] << " precision: " << PrecisionToStr(precision) << " layout: " << DataLayoutToStr(layout); // Prepare the device output tensors switch (precision) { case PRECISION(kFloat): origin_otensors_[i]->mutable_data(); break; case PRECISION(kInt8): origin_otensors_[i]->mutable_data(); break; case PRECISION(kInt16): origin_otensors_[i]->mutable_data(); break; case PRECISION(kInt32): origin_otensors_[i]->mutable_data(); break; case PRECISION(kInt64): origin_otensors_[i]->mutable_data(); break; default: LOG(FATAL) << "[RKNPU] " << output_names_[i] << " can't mutable data with precision type " << PrecisionToStr(precision); break; } device_otensors_.push_back(node->data()); } // Create the RKNPU model and set the input and output nodes device_program_ = lite::rknpu::Device::Global().Build( model_name_, graph.GetHandle(), device_itensors_, device_otensors_); if (device_program_ == nullptr) { LOG(WARNING) << "[RKNPU] Build model failed!"; return false; } return true; } bool SubgraphEngine::LaunchDeviceProgram() { LOG(INFO) << "[RKNPU]:LaunchDeviceProgram"; std::vector inputs; std::vector outputs; inputs.resize(origin_itensors_.size()); for (size_t i = 0; i < origin_itensors_.size(); i++) { inputs[i].index = i; inputs[i].buf = const_cast(origin_itensors_[i]->raw_data()); inputs[i].size = origin_itensors_[i]->memory_size(); inputs[i].pass_through = false; inputs[i].type = subgraph::rknpu::ToRknpuPrecisionType(origin_itensors_[i]->precision()); inputs[i].layout = rk::nn::DataLayoutType::NCHW; } outputs.resize(origin_otensors_.size()); for (size_t i = 0; i < origin_otensors_.size(); i++) { outputs[i].index = i; outputs[i].buf = const_cast(origin_otensors_[i]->raw_data()); outputs[i].size = origin_otensors_[i]->memory_size(); outputs[i].want_float = false; } device_program_->SetInputs(inputs); device_program_->Run(); device_program_->GetOutputs(outputs); return true; } void SubgraphCompute::PrepareForRun() { LOG(INFO) << "[RKNPU]:PrepareForRun"; auto& param = this->Param(); engine_.reset(new SubgraphEngine(ctx_.get(), param.block_idx, param.program_desc, param.exec_scope, param.input_data_names, param.output_data_names)); CHECK(engine_); } void SubgraphCompute::Run() { LOG(INFO) << "[RKNPU]:Run"; CHECK(engine_); engine_->Run(); } } // namespace rknpu } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(subgraph, kRKNPU, kInt8, kNCHW, paddle::lite::kernels::rknpu::SubgraphCompute, def) .BindInput("Inputs", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kInt8), DATALAYOUT(kNCHW))}) .BindOutput("Outputs", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kInt8), DATALAYOUT(kNCHW))}) .Finalize();