// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/npu/bridges/registry.h" #include "lite/kernels/rknpu/bridges/graph.h" #include "lite/kernels/rknpu/bridges/utility.h" namespace paddle { namespace lite { namespace subgraph { namespace rknpu { int BatchNormConverter(void* ctx, OpLite* op, KernelBase* kernel) { CHECK(ctx != nullptr); CHECK(op != nullptr); auto graph = static_cast(ctx); auto op_info = op->op_info(); auto op_type = op_info->Type(); auto scope = op->scope(); VLOG(3) << "[RKNPU] Converting " + op_type + "..."; // Get input and output vars and op attributes auto x_name = op_info->Input("X").front(); auto x = scope->FindMutableTensor(x_name); auto x_dims = x->dims(); auto scale_name = op_info->Input("Scale").front(); auto scale = scope->FindMutableTensor(scale_name); auto bias_name = op_info->Input("Bias").front(); auto bias = scope->FindMutableTensor(bias_name); auto mean_name = op_info->Input("Mean").front(); auto mean = scope->FindMutableTensor(mean_name); auto variance_name = op_info->Input("Variance").front(); auto variance = scope->FindMutableTensor(variance_name); auto y_name = op_info->Output("Y").front(); auto y = scope->FindMutableTensor(y_name); float momentum = op_info->GetAttr("momentum"); float epsilon = op_info->GetAttr("epsilon"); int mode = 1; // bnScale, bnBias tensor dims are 1xCx1x1 bool use_global_stats = op_info->GetAttr("use_global_stats"); // for quantization bool enable_int8 = false; float input_scale = 1.0; float output_scale = 1.0; int bit_length = 8; DataLayoutType layout = DATALAYOUT(kNCHW); PrecisionType precision = PRECISION(kFloat); if (op_info->HasAttr("enable_int8")) { enable_int8 = op_info->GetAttr("enable_int8"); CHECK(op_info->HasInputScale(x_name)); input_scale = op_info->GetInputScale(x_name)[0]; bit_length = op_info->GetAttr("bit_length"); CHECK(op_info->HasOutputScale(y_name)); output_scale = op_info->GetOutputScale(y_name)[0]; if (enable_int8) { precision = PRECISION(kInt8); } } // X node std::shared_ptr x_node = nullptr; if (graph->Has(x_name)) { x_node = graph->Get(x_name); } else { x_node = graph->Add(x_name, *x); } // Scale, Bias, Mean, Variance node auto scale_node = graph->Add(scale_name, *scale); auto bias_node = graph->Add(bias_name, *bias); auto mean_node = graph->Add(mean_name, *mean); auto variance_node = graph->Add(variance_name, *variance); std::shared_ptr output_node = nullptr; QuantizationInfo output_qnt; output_qnt.enable_int8 = enable_int8; if (enable_int8) { output_qnt.quant_bits = bit_length; output_qnt.scale.push_back(output_scale); y->mutable_data(); } output_node = graph->Add(y_name, *y, precision, layout, output_qnt); std::vector> inputs; std::vector> outputs; inputs.push_back(x_node->data()); inputs.push_back(mean_node->data()); inputs.push_back(variance_node->data()); inputs.push_back(scale_node->data()); inputs.push_back(bias_node->data()); outputs.push_back(output_node->data()); rk::nn::BatchNormAttr attrs; attrs.eps = epsilon; auto rGraph = graph->GetHandle(); auto bn = rGraph->AddOperator( rk::nn::OperatorType::BATCH_NORM, inputs, outputs, &attrs); return SUCCESS; } } // namespace rknpu } // namespace subgraph } // namespace lite } // namespace paddle REGISTER_SUBGRAPH_BRIDGE(batch_norm, kRKNPU, paddle::lite::subgraph::rknpu::BatchNormConverter);