// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/operators/scale_op.h" #include #include #include "lite/core/op_registry.h" #include "lite/kernels/mlu/bridges/test_helper.h" #include "lite/kernels/npu/bridges/registry.h" namespace paddle { namespace lite { namespace subgraph { namespace mlu { void scale_ref(const std::shared_ptr op) { Scope* scope = op->scope(); const OpInfo* op_info = op->op_info(); auto x = scope->FindVar(op_info->Input("X").front())->GetMutable(); auto out = scope->FindVar(op_info->Output("Out").front())->GetMutable(); float scale = op_info->GetAttr("scale"); float bias = op_info->GetAttr("bias"); bool bias_after_scale = op_info->GetAttr("bias_after_scale"); if (!bias_after_scale) { bias *= scale; } auto x_data = x->data(); auto out_data = out->mutable_data(); DDim x_dims = x->dims(); DDim out_dims = out->dims(); CHECK_EQ(x_dims.production(), out_dims.production()); for (int i = 0; i < out_dims.production(); i++) { out_data[i] = x_data[i] * scale + bias; } } void test_scale(int bs, int ic, int ih, int iw, bool bias_after_scale, float scale, float bias) { // prepare input&output variables Scope scope; std::string x_var_name("x"); std::string out_var_name("out"); std::string out_ref_var_name("out_ref"); auto* x = scope.Var(x_var_name)->GetMutable(); auto* out = scope.Var(out_var_name)->GetMutable(); auto* out_ref = scope.Var(out_ref_var_name)->GetMutable(); x->Resize({bs, ic, ih, iw}); // initialize input&output data FillTensor(x); // initialize op desc cpp::OpDesc opdesc; opdesc.SetType("scale"); opdesc.SetInput("X", {x_var_name}); opdesc.SetOutput("Out", {out_var_name}); opdesc.SetAttr("bias_after_scale", bias_after_scale); opdesc.SetAttr("scale", scale); opdesc.SetAttr("bias", bias); // create and convert op to MLU model, then run it on MLU auto op = CreateOp(opdesc, &scope); scale_ref(op); out_ref->CopyDataFrom(*out); Tensor input_trans; input_trans.Resize({bs, ic, ih, iw}); transpose(x->mutable_data(), input_trans.mutable_data(), {bs, ic, ih, iw}, {0, 2, 3, 1}); auto os = out->dims(); out->Resize({static_cast(os[0]), static_cast(os[2]), static_cast(os[3]), static_cast(os[1])}); x->CopyDataFrom(input_trans); x->Resize({bs, ih, iw, ic}); LaunchOp(op, {x_var_name}, {out_var_name}); // execute reference implementation and save to output tensor('out') // compare results auto* out_data = out->mutable_data(); auto* out_ref_data = out_ref->mutable_data(); Tensor output_trans; output_trans.Resize(os); transpose(out_data, output_trans.mutable_data(), {static_cast(os[0]), static_cast(os[2]), static_cast(os[3]), static_cast(os[1])}, {0, 3, 1, 2}); out_data = output_trans.mutable_data(); for (int i = 0; i < out->dims().production(); i++) { VLOG(5) << i; EXPECT_NEAR(out_data[i], out_ref_data[i], 1e-5); } } TEST(MLUBridges, scale) { for (auto bs : {1, 3}) { for (auto ic : {1, 3}) { for (auto ih : {3, 4}) { for (auto iw : {4, 3}) { for (auto bias_after_scale : {false, true}) { for (auto scale : {-1.0f, 5.0f}) { for (auto bias : {-2.0f, 30.0f}) { VLOG(3) << "bs: " << bs << " ic: " << ic << " ih: " << ih << " iw: " << iw // << " bias_after_scale: " << bias_after_scale << " scale: " << scale << " bias: " << bias; test_scale(bs, ic, ih, iw, bias_after_scale, scale, bias); } } } } } } } } } // namespace mlu } // namespace subgraph } // namespace lite } // namespace paddle USE_SUBGRAPH_BRIDGE(scale, kMLU);