/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "../test_include.h" #include "operators/mul_op.h" namespace paddle_mobile { namespace framework { template class TestMulOp { public: explicit TestMulOp(const Program p) : program_(p) { if (use_optimize_) { to_predict_program_ = program_.optimizeProgram; } else { to_predict_program_ = program_.originProgram; } const std::vector> blocks = to_predict_program_->Blocks(); // DLOG << " **block size " << blocks.size(); for (int i = 0; i < blocks.size(); ++i) { std::shared_ptr block_desc = blocks[i]; std::vector> ops = block_desc->Ops(); // DLOG << " ops " << ops.size(); for (int j = 0; j < ops.size(); ++j) { std::shared_ptr op = ops[j]; if (op->Type() == "mul" && op->Input("X")[0] == "pool2d_0.tmp_0") { DLOG << " mul attr size: " << op->GetAttrMap().size(); DLOG << " inputs size: " << op->GetInputs().size(); DLOG << " outputs size: " << op->GetOutputs().size(); DLOG << " Input X is : " << op->Input("X")[0]; DLOG << " Input Y is : " << op->Input("Y")[0]; DLOG << " Output Out is : " << op->Output("Out")[0]; DLOG << "x_num_col_dims : " << op->GetAttrMap().at("x_num_col_dims").Get(); DLOG << "y_num_col_dims : " << op->GetAttrMap().at("y_num_col_dims").Get(); std::shared_ptr> mul = std::make_shared>( op->Type(), op->GetInputs(), op->GetOutputs(), op->GetAttrMap(), program_.scope); ops_of_block_[*block_desc.get()].push_back(mul); } } } } std::shared_ptr predict_mul(Tensor &t1, Tensor &t2) { // feed auto scope = program_.scope; Variable *x_feed_value = scope->Var("pool2d_0.tmp_0"); auto tensor_x = x_feed_value->GetMutable(); tensor_x->ShareDataWith(t1); Variable *y_feed_value = scope->Var("fc_0.w_0"); auto tensor_y = y_feed_value->GetMutable(); tensor_y->ShareDataWith(t2); Variable *con_output = scope->Var("fc_0.tmp_0"); auto *output_tensor = con_output->GetMutable(); output_tensor->mutable_data({3, 3}); // DLOG << typeid(output_tensor).name(); // DLOG << "output_tensor dims: " << output_tensor->dims(); std::shared_ptr out_tensor = std::make_shared(); out_tensor.reset(output_tensor); predict_mul(t1, t2, 0); return out_tensor; } private: const framework::Program program_; std::shared_ptr to_predict_program_; std::map>>> ops_of_block_; bool use_optimize_ = false; void predict_mul(const Tensor &t1, const Tensor &t2, int block_id) { std::shared_ptr to_predict_block = to_predict_program_->Block(block_id); for (int j = 0; j < ops_of_block_[*to_predict_block.get()].size(); ++j) { auto op = ops_of_block_[*to_predict_block.get()][j]; DLOG << "op -> run()"; op->Run(); } } }; template class TestMulOp; } // namespace framework } // namespace paddle_mobile int main() { DLOG << "----------**********----------"; DLOG << "begin to run MulOp Test"; paddle_mobile::Loader loader; auto program = loader.Load(std::string("../../test/models/" "image_classification_resnet.inference.model")); /// input x (3,2,1,1) paddle_mobile::framework::Tensor inputx; SetupTensor(&inputx, {3, 2, 1, 1}, static_cast(0), static_cast(1)); auto *inputx_ptr = inputx.data(); /// input y (2,3) paddle_mobile::framework::Tensor inputy; SetupTensor(&inputy, {2, 3}, static_cast(0), static_cast(1)); auto *inputy_ptr = inputy.data(); paddle_mobile::framework::TestMulOp testMulOp(program); auto output_mul = testMulOp.predict_mul(inputx, inputy); auto *output_mul_ptr = output_mul->data(); auto dimx_1 = inputx.numel() / inputx.dims()[0]; DLOG << " inputx : "; for (int i = 0; i < inputx.dims()[0]; ++i) { for (int j = 0; j < dimx_1; ++j) { DLOGF("%f ", inputx_ptr[i * dimx_1 + j]); } DLOGF("\n"); } auto dimy_1 = inputy.numel() / inputy.dims()[0]; DLOG << " inputy : "; for (int i = 0; i < inputy.dims()[0]; ++i) { for (int j = 0; j < dimy_1; ++j) { DLOGF("%f ", inputy_ptr[i * dimx_1 + j]); } DLOGF("\n"); } auto dim_output_1 = output_mul->numel() / output_mul->dims()[0]; DLOG << " output : "; for (int i = 0; i < output_mul->dims()[0]; ++i) { for (int j = 0; j < dim_output_1; ++j) { DLOGF("%f ", output_mul_ptr[i * dimy_1 + j]); } DLOGF("\n"); } /// output (3,3) DLOG << "output memory size : " << output_mul->memory_size(); DLOG << "output numel : " << output_mul->numel(); DLOG << inputx_ptr[0] << " x " << inputy_ptr[0] << " + " << inputx_ptr[1] << " x " << inputy_ptr[0 + 3] << " = " << output_mul_ptr[0]; return 0; }