/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "../test_include.h" #include "operators/transpose2_op.h" namespace paddle_mobile { namespace framework { template class TestTranspose2Op { public: explicit TestTranspose2Op(const Program p) : program_(p) { if (use_optimize_) { to_predict_program_ = program_.optimizeProgram; } else { to_predict_program_ = program_.originProgram; } const std::vector> blocks = to_predict_program_->Blocks(); for (auto block_desc : blocks) { std::vector> ops = block_desc->Ops(); for (auto op : ops) { if (op->Type() == "transpose2") { DLOG << " attr size: " << op->GetAttrMap().size(); std::unordered_map attrs = op->GetAttrMap(); for (std::unordered_map::iterator it = attrs.begin(); it != attrs.end(); ++it) { DLOG << " " << it->first << " " << it->second; } DLOG << " inputs size: " << op->GetInputs().size(); VariableNameMap inputs = op->GetInputs(); for (VariableNameMap::iterator it = inputs.begin(); it != inputs.end(); ++it) { DLOG << " " << it->first << " " << it->second; } DLOG << " outputs size: " << op->GetOutputs().size(); VariableNameMap outputs = op->GetOutputs(); for (VariableNameMap::iterator it = outputs.begin(); it != outputs.end(); ++it) { DLOG << " " << it->first << " " << it->second; } input_var_name = op->Input("X")[0]; output_var_name = op->Output("Out")[0]; std::shared_ptr> op_ptr = std::make_shared>( op->Type(), op->GetInputs(), op->GetOutputs(), op->GetAttrMap(), program_.scope); ops_of_block_[*block_desc.get()].push_back(op_ptr); return; } } } } std::shared_ptr predict(const Tensor &t) { auto scope = program_.scope; Variable *input_feed_value = scope->Var(input_var_name); auto tensor_input = input_feed_value->GetMutable(); tensor_input->ShareDataWith(t); Variable *output = scope->Var(output_var_name); auto *output_tensor = output->GetMutable(); output_tensor->mutable_data({1, 2, 8}); std::shared_ptr out_tensor = std::make_shared(); out_tensor.reset(output_tensor); predict(t, 0); return out_tensor; } private: const framework::Program program_; std::shared_ptr to_predict_program_; std::map>>> ops_of_block_; bool use_optimize_ = false; string input_var_name; string output_var_name; void predict(const Tensor &t, int block_id) { std::shared_ptr to_predict_block = to_predict_program_->Block(block_id); for (int j = 0; j < ops_of_block_[*to_predict_block.get()].size(); ++j) { auto op = ops_of_block_[*to_predict_block.get()][j]; op->Run(); } } }; template class TestTranspose2Op; } // namespace framework } // namespace paddle_mobile int main() { DLOG << "----------**********----------"; DLOG << "begin to run Transpose2 Test"; paddle_mobile::framework::Loader loader; auto program = loader.Load(std::string(g_ocr) + "/model", std::string(g_ocr) + "/params"); paddle_mobile::framework::Tensor input; SetupTensor(&input, {1, 8, 2}, static_cast(0), static_cast(1)); auto *input_ptr = input.data(); for (int i = 0; i < 16; ++i) { *(input_ptr + i) = i; } DLOG << "input : "; for (int i = 0; i < input.numel(); ++i) { DLOG << " index " << i << " : " << input_ptr[i]; } paddle_mobile::framework::TestTranspose2Op testTranspose2Op(program); auto output = testTranspose2Op.predict(input); auto *output_ptr = output->data(); DLOG << "output : "; for (int i = 0; i < output->numel(); ++i) { DLOG << " index " << i << " : " << output_ptr[i]; } return 0; }