// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/api/cxx_api.h" #include #include //NOLINT #include #include "lite/api/paddle_api.h" #include "lite/core/device_info.h" #include "lite/core/version.h" #if (defined LITE_WITH_X86) && (defined PADDLE_WITH_MKLML) && \ !(defined LITE_ON_MODEL_OPTIMIZE_TOOL) #include #include "lite/backends/x86/mklml.h" #endif namespace paddle { namespace lite { void CxxPaddleApiImpl::Init(const lite_api::CxxConfig &config) { config_ = config; #ifdef LITE_WITH_CUDA Env::Init(); #endif auto places = config.valid_places(); std::vector passes{}; auto use_layout_preprocess_pass = config.model_dir().find("OPENCL_PRE_PRECESS"); if (use_layout_preprocess_pass != std::string::npos) { passes = {"type_layout_cast_preprocess_pass"}; } raw_predictor_.Build(config, places, passes); mode_ = config.power_mode(); threads_ = config.threads(); #if (defined LITE_WITH_X86) && (defined PADDLE_WITH_MKLML) && \ !(defined LITE_ON_MODEL_OPTIMIZE_TOOL) int num_threads = config.x86_math_library_num_threads(); int real_num_threads = num_threads > 1 ? num_threads : 1; paddle::lite::x86::MKL_Set_Num_Threads(real_num_threads); omp_set_num_threads(real_num_threads); VLOG(3) << "set_x86_math_library_math_threads() is set successfully and the " "number of threads is:" << num_threads; #endif } std::unique_ptr CxxPaddleApiImpl::GetInput(int i) { auto *x = raw_predictor_.GetInput(i); return std::unique_ptr(new lite_api::Tensor(x)); } std::unique_ptr CxxPaddleApiImpl::GetOutput( int i) const { const auto *x = raw_predictor_.GetOutput(i); return std::unique_ptr(new lite_api::Tensor(x)); } std::vector CxxPaddleApiImpl::GetInputNames() { return raw_predictor_.GetInputNames(); } std::vector CxxPaddleApiImpl::GetOutputNames() { return raw_predictor_.GetOutputNames(); } void CxxPaddleApiImpl::Run() { #ifdef LITE_WITH_ARM lite::DeviceInfo::Global().SetRunMode(mode_, threads_); #endif raw_predictor_.Run(); } std::shared_ptr CxxPaddleApiImpl::Clone() { std::lock_guard lock(mutex_); auto predictor = std::make_shared(); predictor->Init(config_); return predictor; } std::string CxxPaddleApiImpl::GetVersion() const { return version(); } std::unique_ptr CxxPaddleApiImpl::GetTensor( const std::string &name) const { auto *x = raw_predictor_.GetTensor(name); return std::unique_ptr(new lite_api::Tensor(x)); } std::unique_ptr CxxPaddleApiImpl::GetInputByName( const std::string &name) { return std::unique_ptr( new lite_api::Tensor(raw_predictor_.GetInputByName(name))); } void CxxPaddleApiImpl::SaveOptimizedModel(const std::string &model_dir, lite_api::LiteModelType model_type, bool record_info) { raw_predictor_.SaveModel(model_dir, model_type, record_info); } } // namespace lite namespace lite_api { template <> std::shared_ptr CreatePaddlePredictor( const CxxConfig &config) { auto x = std::make_shared(); x->Init(config); return x; } } // namespace lite_api } // namespace paddle