// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "lite/api/paddle_use_kernels.h" #include "lite/api/paddle_use_ops.h" #include "lite/core/arena/framework.h" namespace paddle { namespace lite { class NormComputeTester : public arena::TestCase { protected: // common attributes for this op. std::string input_ = "x"; std::string output_ = "out"; int axis_ = 1; float epsilon_ = 1e-9; DDim dims_{{3, 5, 4, 4}}; bool bias_after_scale_; public: NormComputeTester(const Place& place, const std::string& alias, int axis, float epsilon, DDim dims) : TestCase(place, alias), axis_(axis), epsilon_(epsilon), dims_(dims) {} void RunBaseline(Scope* scope) override { auto* out = scope->NewTensor(output_); CHECK(out); out->Resize(dims_); auto* out_data = out->mutable_data(); auto* x = scope->FindTensor(input_); const auto* x_data = x->data(); int axis = axis_ < 0 ? axis_ + dims_.size() : axis_; int pre_n = dims_.count(0, axis); int n = dims_[axis]; int post_n = dims_.count(axis + 1, dims_.size()); for (int i = 0; i < pre_n; i++) { for (int k = 0; k < post_n; k++) { float sum = epsilon_; const float* in_tmp = x_data + i * n * post_n + k; for (int j = 0; j < n; j++) { sum += in_tmp[j * post_n] * in_tmp[j * post_n]; } sum = std::sqrt(sum); float* out_tmp = out_data + i * n * post_n + k; for (int j = 0; j < n; j++) { out_tmp[j * post_n] = in_tmp[j * post_n] / sum; } } } } void PrepareOpDesc(cpp::OpDesc* op_desc) { op_desc->SetType("norm"); op_desc->SetInput("X", {input_}); op_desc->SetOutput("Out", {output_}); op_desc->SetAttr("axis", axis_); op_desc->SetAttr("epsilon", epsilon_); } void PrepareData() override { std::vector data(dims_.production()); for (int i = 0; i < dims_.production(); i++) { data[i] = i * 1.1; } SetCommonTensor(input_, dims_, data.data()); } }; void test_norm(Place place) { DDimLite dims{{3, 5, 4, 4}}; for (int axis : {1}) { for (float epsilon : {1e-9}) { std::unique_ptr tester( new NormComputeTester(place, "def", axis, epsilon, dims)); arena::Arena arena(std::move(tester), place, 2e-5); arena.TestPrecision(); } } } TEST(Norm, precision) { // #ifdef LITE_WITH_X86 // Place place(TARGET(kX86)); // #endif #ifdef LITE_WITH_ARM Place place(TARGET(kARM)); test_norm(place); #endif } } // namespace lite } // namespace paddle