// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/arm/norm_compute.h" #include "lite/backends/arm/math/funcs.h" namespace paddle { namespace lite { namespace kernels { namespace arm { void NormCompute::PrepareForRun() {} void NormCompute::Run() { auto& ctx = this->ctx_->template As(); auto& param = this->Param(); auto input_dims = param.X->dims(); int dim_size = param.X->dims().size(); auto axis = (param.axis < 0) ? param.axis + dim_size : param.axis; const auto* x_data = param.X->data(); auto* o_data = param.Out->mutable_data(); int pre_n = input_dims.count(0, axis); int post_n = input_dims.count(axis + 1, dim_size); int n = input_dims[axis]; lite::arm::math::norm(x_data, pre_n, n, post_n, param.epsilon, o_data, &ctx); } } // namespace arm } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL( norm, kARM, kFloat, kNCHW, paddle::lite::kernels::arm::NormCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))}) .BindOutput("Norm", {LiteType::GetTensorTy(TARGET(kARM))}) .Finalize();