/* Copyright (c) 2016 Baidu, Inc. All Rights Reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ==============================================================================*/ #include #include "../src/io.h" #include "common/log.h" #include "framework/framework.pb.h" #include "framework/lod_tensor.h" #include "framework/program_desc.h" #include "framework/scope.h" #include "framework/tensor.h" #define PADDLE_MOBILE_DEBUG 1 namespace paddle_mobile { void ReadBinaryFile(const std::string &filename, std::string *contents) { std::ifstream fin(filename, std::ios::in | std::ios::binary); fin.seekg(0, std::ios::end); contents->clear(); contents->resize(fin.tellg()); fin.seekg(0, std::ios::beg); fin.read(&(contents->at(0)), contents->size()); fin.close(); } template void Loader::LoadVar(framework::LoDTensor *tensor, const std::string &file_path) { std::ifstream is(file_path); std::fpos pos; pos = is.tellg(); // save current position is.seekg(0, std::ios::end); is.seekg(pos); // restore saved position // 1. version uint32_t version; is.read(reinterpret_cast(&version), sizeof(version)); // 2 Lod information uint64_t lod_level; is.read(reinterpret_cast(&lod_level), sizeof(lod_level)); auto &lod = *tensor->mutable_lod(); lod.resize(lod_level); for (uint64_t i = 0; i < lod_level; ++i) { uint64_t size; is.read(reinterpret_cast(&size), sizeof(size)); std::vector tmp(size / sizeof(size_t)); is.read(reinterpret_cast(tmp.data()), static_cast(size)); for (auto j : tmp) { LOG(kLOG_DEBUG1) << " lod - " << j; } lod[i] = tmp; } // 3. tensor version uint32_t tensor_version; is.read(reinterpret_cast(&tensor_version), sizeof(tensor_version)); // 4. tensor desc int32_t size; is.read(reinterpret_cast(&size), sizeof(size)); std::unique_ptr buf(new char[size]); is.read(reinterpret_cast(buf.get()), size); framework::proto::VarType::TensorDesc desc; desc.ParseFromArray(buf.get(), size); int memory_size = 1; for (auto l : desc.dims()) { memory_size *= l; } std::vector dims; dims.reserve(static_cast(desc.dims().size())); std::copy(desc.dims().begin(), desc.dims().end(), std::back_inserter(dims)); tensor->Resize(framework::make_ddim(dims)); void *memory = tensor; int type_size = 0; switch (desc.data_type()) { case framework::proto::VarType::FP16: type_size = 2; break; case framework::proto::VarType::FP32: type_size = 4; memory = tensor->mutable_data(); break; case framework::proto::VarType::FP64: type_size = 8; break; case framework::proto::VarType::INT32: type_size = 4; break; case framework::proto::VarType::INT64: type_size = 8; break; case framework::proto::VarType::BOOL: type_size = 1; break; default: break; } is.read(static_cast(memory), memory_size * type_size); is.close(); } template const framework::Program Loader::Load( const std::string &dirname) { std::string model_filename = dirname + "/__model__"; std::string program_desc_str; ReadBinaryFile(model_filename, &program_desc_str); framework::proto::ProgramDesc program_desc_proto; program_desc_proto.ParseFromString(program_desc_str); std::shared_ptr originProgramDesc = std::make_shared(program_desc_proto); framework::Program program; program.originProgram = originProgramDesc; std::shared_ptr scope = std::make_shared(); program.scope = scope; originProgramDesc->Block(0); for (const auto &block : originProgramDesc->Blocks()) { for (int i = 0; i < block->Vars().size(); ++i) { std::shared_ptr var_desc = block->Vars()[i]; auto var = scope->Var(var_desc->Name()); if (var_desc->GetType() == framework::proto::VarType::LOD_TENSOR) { if (var_desc->Persistable() && var_desc->GetType() != framework::proto::VarType::FEED_MINIBATCH && var_desc->GetType() != framework::proto::VarType::FETCH_LIST) { auto tensor = var->GetMutable(); // to load LoadVar(tensor, dirname + "/" + var_desc->Name()); } } else { // TODO by someone } } } #ifdef PADDLE_MOBILE_DEBUG for (const auto &block : program_desc_proto.blocks()) { LOG(kLOG_DEBUG) << "block: " << block.idx(); for (int j = 0; j < block.ops().size(); ++j) { // if (j == 2) { // break; // } framework::proto::OpDesc op = block.ops()[j]; LOG(kLOG_DEBUG1) << "op: " << op.type(); for (int m = 0; m < op.inputs_size(); ++m) { const framework::proto::OpDesc::Var &var = op.inputs(m); LOG(kLOG_DEBUG2) << "input parameter: " << var.parameter(); for (const auto &n : var.arguments()) { LOG(kLOG_DEBUG3) << "argument - " << n; } } for (int y = 0; y < op.outputs_size(); ++y) { const framework::proto::OpDesc::Var &var = op.outputs(y); LOG(kLOG_DEBUG2) << "out parameter: " << var.parameter(); for (const auto &z : var.arguments()) { LOG(kLOG_DEBUG3) << "argument - " << z; } } for (const auto &attr : op.attrs()) { LOG(kLOG_DEBUG2) << "attr name: " << attr.name(); switch (attr.type()) { case framework::proto::AttrType::BOOLEAN: LOG(kLOG_DEBUG3) << "boolen: " << attr.b(); break; case framework::proto::AttrType::INT: LOG(kLOG_DEBUG3) << "int: " << attr.i(); break; case framework::proto::AttrType::FLOAT: LOG(kLOG_DEBUG3) << "float: " << attr.f(); case framework::proto::AttrType::STRING: LOG(kLOG_DEBUG3) << "string: " << attr.s(); case framework::proto::AttrType::BOOLEANS: for (int y = 0; y < attr.bools_size(); ++y) { LOG(kLOG_DEBUG3) << "bools: " << attr.bools(y); } case framework::proto::AttrType::LONG: LOG(kLOG_DEBUG3) << "long: " << attr.l(); case framework::proto::AttrType::FLOATS: for (int y = 0; y < attr.floats_size(); ++y) { LOG(kLOG_DEBUG3) << "floats: " << attr.floats(y); } case framework::proto::AttrType::INTS: for (int y = 0; y < attr.ints_size(); ++y) { LOG(kLOG_DEBUG3) << "ints: " << attr.ints(y); } case framework::proto::AttrType::STRINGS: for (int y = 0; y < attr.strings_size(); ++y) { LOG(kLOG_DEBUG3) << "strings: " << attr.strings(y); } case framework::proto::BLOCK: break; } } } for (const auto &var : block.vars()) { if (var.type().type() == framework::proto::VarType::LOD_TENSOR) { LOG(kLOG_DEBUG1) << "var name: " << var.name(); const framework::proto::VarType::TensorDesc &tensor_desc = var.type().lod_tensor().tensor(); LOG(kLOG_DEBUG2) << "in var tensor desc dims size: " << tensor_desc.dims().size(); for (int l = 0; l < tensor_desc.dims().size(); ++l) { LOG(kLOG_DEBUG3) << "var tensor desc dim " << l << " value: " << tensor_desc.dims()[l]; } } if (var.persistable() && var.type().type() != framework::proto::VarType::FEED_MINIBATCH && var.type().type() != framework::proto::VarType::FETCH_LIST) { std::string file_path = dirname + "/" + var.name(); std::ifstream is(file_path); std::fpos pos; pos = is.tellg(); // save current position is.seekg(0, std::ios::end); is.seekg(pos); // restore saved position // 1. version uint32_t version; is.read(reinterpret_cast(&version), sizeof(version)); // 2 Lod information uint64_t lod_level; is.read(reinterpret_cast(&lod_level), sizeof(lod_level)); for (uint64_t i = 0; i < lod_level; ++i) { uint64_t size; is.read(reinterpret_cast(&size), sizeof(size)); std::vector tmp(size / sizeof(size_t)); is.read(reinterpret_cast(tmp.data()), static_cast(size)); for (int j = 0; j < tmp.size(); ++j) { } } is.read(reinterpret_cast(&version), sizeof(version)); int32_t size; is.read(reinterpret_cast(&size), sizeof(size)); std::unique_ptr buf(new char[size]); is.read(reinterpret_cast(buf.get()), size); framework::proto::VarType::TensorDesc desc; desc.ParseFromArray(buf.get(), size); int memory_size = 1; for (long long l : desc.dims()) { memory_size *= l; } int type_size = 0; switch (desc.data_type()) { case framework::proto::VarType::FP16: type_size = 2; break; case framework::proto::VarType::FP32: type_size = 4; break; case framework::proto::VarType::FP64: type_size = 8; break; case framework::proto::VarType::INT32: type_size = 4; break; case framework::proto::VarType::INT64: type_size = 8; break; case framework::proto::VarType::BOOL: type_size = 1; break; default: break; } void *memory = malloc(memory_size * type_size); is.read(static_cast(memory), memory_size * type_size); is.close(); } else { // TODO } } } #endif return program; } template class Loader; } // namespace paddle_mobile